1. Радиус сферы равен половине диаметра, R = 25 см.
Отрезок, соединяющий центр сферы с центром сечения, перпендикулярен сечению. это и есть расстояние от центра сферы до сечения.
Итак, ОА = 25 см, ОС = 15 см. Из прямоугольного треугольника АОС по теореме Пифагора находим радиус сечения:
АС = √(ОА² - ОС²) = √(25² - 15²) = √(625 - 225) = √400 = 20 cм
Линия пересечения сферы плоскостью - окружность. Ее длина:
C = 2π·AC = 2π · 20 = 40π см
2. Сечение шара - круг. Его площадь равна 36π см²:
Sсеч = π · r² = 36π
r² = 36
r = 6 см
Из прямоугольного треугольника АОС по теореме Пифагора:
ОС = √(ОА² - r²) = √(100 - 36) = √64 = 8 см - искомое расстояние.
3. Радиус большого круга равен радиусу шара.
Площадь сечения:
Sсеч = πr²
Площадь большого круга:
S = πR², R = √(S/π)
Sсеч / S = πr² / (πR²) = r²/ R²
По условию Sсеч / S = 3 / 4, ⇒
r²/ R² = 3 / 4, тогда r/R = √3/2
В прямоугольном треугольнике АОС r/R - это косинус угла А.
Тогда ∠А = 30°.
Расстояние от центра шара до сечения - отрезок ОС. Это катет, лежащий напротив угла в 30°, значит он равен
OC = R/2 = √(S/π) / 2 = √S/(2√π)
4. Радиус шара равен половине диаметра:
R = 2√3 см
Прямоугольный треугольник ОВС равнобедренный, так как в нем острый угол равен 45°, поэтому
ОС = r = R/√2 = 2√3 / √2 = √6 см
Sсеч = πr² = π · (√6)² = 6π см²
— 1-е поколение ЭВМ — это ламповые машины 50-х годов.Для ввода программ и данных использовались перфоленты и перфокарты.
— 2-е поколение ЭВМ — транзисторы стали элементарной базой в 60-х годах. ЭВМ теперь надежнее,компактнее, менее энергоемкие.
— 3-е поколение ЭВМ — создано на интегральных схемах.Появляются магнитные диски, новый тип запоминающих устройств.
— 4-е поколение ЭВМ — создан микропроцессор в 1971 году фирмой Intel.Соединив микропроцессор с устройствами внешней памяти,ввода-вывода, изобрели микроЭВМ.
1) 9 2) 5 и 8 3) 10 + 2/7 и 17 + 2/7
Объяснение:
1. В треугольниках ABC и PBK угол B - общий; углы BPK и BAC равны, как соответственные углы при PK // AC и секущей AB. Поэтому треугольники ABC и PBK подобны по двум углам. BK / BC = PK / AC. BK = BC - KC = 8, т.е. 6 / AC = 8 / 12; AC = 9.
2. Пусть первая высота равна х, вторая - у, тогда площадь параллелограмма равна 10х, она же равна 16у, причём х + у = 13, по условию. Это система уравнений. Выразим у через х: х = 13 - у, из первого уравнения 130 - 10у = 16у; 26у = 130; у = 5 - одна из высот; х = 13 - 5 = 8 - вторая.
3. Пусть это секущие AB и AC, внешняя часть первой секущей - AD, второй - AE. Тогда пусть AD = x тогда AE = x - 1. По теореме о секущих, произведения секущих на их внешние стороны равны. x * AB = (x - 1) * AC; x(x + 8) = (x - 1)(x + 16)
x^2 + 8x = x^2 + 15x - 16; 7x = 16; x = 2+2/7; AB = 10+2/7; AC = 17+ 2/7