Чтобы понять принцип решения, надо иметь 2 рисунка. Один - в виде осевого сечения пирамиды с вписанной в неё сферой через апофему боковой грани, второй - в виде плана основания.
По первому рисунку определяем: проекция отрезка, соединяющего вершину пирамиды с центром сферы, равна R/tg(β/2).
По второму эту же проекцию как отрезок биссектрисы угла при основании равнобедренного треугольника от вершины до точки пересечения биссектрис находим равной (a/2)*tg(α/2).
Я бы просто взяла интеграл, но для понимания нужно проследить некоторые детали. Да, здесь нужно понимать, откуда берется шар. Это вращение какой то функции заданной на плоскости вокруг оси y или x, это неважно, из-за сферической симметрии фигуры. Такая функция - это криволинейная трапеция y=sqrt(R^2 - x^2). Далее остается только проинтегрировать. Я напишу на листке, а то здесь сложно писать длинные формулы. Аналогично для шарового слоя. Единственная разница - пределы интегрирования функции. (Здесь я решила вращать вокруг оси OX)
Чтобы понять принцип решения, надо иметь 2 рисунка. Один - в виде осевого сечения пирамиды с вписанной в неё сферой через апофему боковой грани, второй - в виде плана основания.
По первому рисунку определяем: проекция отрезка, соединяющего вершину пирамиды с центром сферы, равна R/tg(β/2).
По второму эту же проекцию как отрезок биссектрисы угла при основании равнобедренного треугольника от вершины до точки пересечения биссектрис находим равной (a/2)*tg(α/2).
Приравняем: R/tg(β/2) = (a/2)*tg(α/2).
Отсюда ответ: R = (a/2)*tg(α/2)*tg(β/2.