1. Найти угол между векторами AС и АB.
*Можно искать не косинус угла, а найти длину вектора BC, тогда ΔABC -- равносторонний и углы равны по 60°.
2. Найти координаты центра сферы и длину ее радиуса. Найти значение m.
Приведём уравнение к общему виду (x - x₀)² + (y - y₀)² + (z - z₀)² = R²:
Тогда O (x₀; y₀; z₀) -- центр сферы, O (0; 1; -2),
R² = 16 ⇒ R = 4
Если точка принадлежит сфере, то подставив её координаты в уравнение, получится верное равенство. Подставим точки A и B в уравнение сферы:
3. Найти уравнение плоскости α.
Ax + By + Cy + D = 0 -- общее уравнение плоскости.
n = (A; B; C) -- вектор нормали ⇒ A = 1, B = 2, C = 3, тогда
Если точка принадлежит плоскости, то подставив её координаты в уравнение, получится верное равенство:
4. Найти общее уравнение прямой.
Общее уравнение прямой представляет собой систему уравнений двух пересекающихся плоскостей. Решение этой системы есть пересечение плоскостей, то есть прямая.
Зададим прямую параметрически:
Исключим параметр λ:
Последняя система -- это общее уравнение прямой.
сторони трикутника відносяться як 5: 6: 7, а периметр=36см
нехай х- коефіцієнт пропорційності, тоді
5х+6х+7х=36см
х=2см
тоді сторони даного трикутника:
5*2см=10см
6*2см=12см
7*2см=14см
за властивістю середньої лінії трикутника, що сполучає середини двох його сторін та дорівнює половині третьої сторони:
10см: 2=5см,
12см: 2=6см,
14см: 2=7см
5см,6см, 7см - сторони трикутника, вершини якого є середини сторін даного трикутника, відповідно його периметр
5см+6см+7см=18см
відповідь: 5см, 6см, 7см - сторони;
18см - периметр.