1) Если точка А лежит между точками В и С, тогда АВ + АС = ВС. Проверим:
АВ + АС = 4,3 + 7,5 = 11,8 (см)
ВС = 3,2 (см)
11,8 см ≠ 3,8 см ⇒ точка А не может лежать между точками В и С.
2) Если точка С лежит между точками А и В, тогда АС + ВС = АВ. Проверим:
АС + ВС = 7,5 + 3,2 = 10,7 (см)
АВ = 4,3 (см)
10,7 см ≠ 4,3 см ⇒ точка С не может лежать между точками А и В.
3) Если точка В лежит между точками А и С, тогда АВ + ВС = АС. Проверим:
АВ + ВС = 4,3 + 3,2 = 7,5 (см)
АС = 7,5 (см)
7,5 см = 7,5 см ⇒ точка В лежит между точками А и С.
По свойству касательной и секущей ОК²=ОМ·ОN.
Пусть ОМ=х, тогда ОN=OM+MN=x+6,
4²=x(х+6),
х²+6х-4=0,
х1=-8, отрицательное значение не подходит,
х2=2.
ON=2+6=8 дм - это ответ.
Теперь докажем, что отрезок MN виден из точки К под большим углом.
Пусть радиус окружности около тр-ка КMN равен r.
На стороне ОК в любом месте возьмём точку Р и опишем окружность около тр-ка РMN, радиусом R. ОР для неё является секущей, а для окружности, радиусом r - касательной, значит R>r.
Формула хорды: l=2R·sin(x/2), где х - градусная мера хорды.
∠MKN=α, ∠MPN=β.
Обратим внимание, что углы α и β - это половина градусной меры хорды.
MN=2R·sinβ ⇒ sinβ=MN/2R.
MN=2r·sinα ⇒ sinα=MN/2r.
Сравним синусы, предположив, что они равны.
MN/2R=MN/2r.
1/R=1/r, но R>r, значит 1/R<1/r, значит sinβ<sinα.
Так как градусная мера хорды не может быть больше 180°, значит в формуле хорды 0°<α<90°, 0°<β<90°.
В этом диапазоне синус угла тем больше, чем больше его градусная мера,
значит α>β.
Доказано.