В основании правильной пирамиды - правильный треугольник. Вершина S проецируется в центр О основания. Высота правильного треугольника СН= (√3/2)*а, где а - сторона треугольника. СН=13√3/2. В правильном треугольнике высота=медиана и делится центром в отношении 2:1, считая от вершины. => HO=(1/3)*CH, а СО=(2/3)*СН или СО=13√3/3, НО=13√3/6.
Из тупого угла ромба проводишь диагональ. Получилось два равносторонних треугольника, поскольку боковые стороныы равны как стороны ромба, значит треуг. равнобедренный. А если в равнобедренном тр-ке угол при вершине 60, то и при основании по 60. Значит тр-ки равносторонние со сторонами 10 см Проведи вторую диагональ. Диагонали пересекаются под прямым углом, точкой пересечения делятся пополам и делят углы пополам из которх они проведены. Рассмотрим один из 4-х прямоугольных тр-ков (а они все равны). Гипотенуза 10 см, один из катетов 5 см, тогда второй катет: √(100 - 25) = √75 = 5√3 см Мы нашли половину второй диагонали, тогда площадь будет равна произведению половины этой диагонали на вторую диагональ, т.е. S = 5√3 * 10 = 50√3 см
В основании правильной пирамиды - правильный треугольник. Вершина S проецируется в центр О основания. Высота правильного треугольника СН= (√3/2)*а, где а - сторона треугольника. СН=13√3/2. В правильном треугольнике высота=медиана и делится центром в отношении 2:1, считая от вершины. => HO=(1/3)*CH, а СО=(2/3)*СН или СО=13√3/3, НО=13√3/6.
По Пифагору:
Боковое ребро пирамиды SC=√(CO²+SO²) = √(313/3).
Апофема (высота боковой грани) SH=√(НO²+SO²) = √(745/12).
Боковая поверхность Sбок = (1/2)*3*АВ*SH =(39/4)*(√(745/3).