AB = AC : sinB = 3:1/3=9; угол В = углу АСН т. к. если угол В=х, то угол А=90-х. тогда в треугольнике АСН угол С =90-(90-х)=х; AH = CA * sinACH = CA*sinB =3*1/3=1; BH = AB - AH ; следовательно BH = 9-1=8; ответ: ВН=8.
1) a*h 2)площадь трапеции=(а+в)*H/2, в равнобедренной трапеции углы при основании равны 3)Дан прямоугольный треугольник АВС,где АВ и АС-катеты, ВС-гипотенуза,AH-высота,а АА1-медиана. S=1/2BC*AH 1/2ВС=АА1,следовательно,S=AA1*BH=24*25=600cм2. 4) угол DAK = AKB как углы, образованные сечением прямой двух параллельных прямых. т.к АК - биссектрисса BAD, то BAK = AKB и треугольник BAK - равносторонний. в случае, если АК и DM пересекаются (рисунок) BC = 3/2 * BK = 3/2 * 20 = 30. Периметр равен 100 см В случае, если AK и DM не пересекаются (рисунок делаем самостоятельно) BC = 3 BK = 60. Периметр равен 160 см
Сделаем рисунок. АВ - общая касательная. IJ- отрезок, соединяющий центры. О - точка пересечения этого отрезка и касательной. IA - радиус большей окружности, JB - радиус меньшей окружности. Вариант решения 1) Как радиусы, проведенные в точку касания, IA и JB перпендикулярны касательной АВ. Прямоугольные треугольники OIA и OJB подобны по двум углам - прямому и вертикальному при О. Все стороны этих треугольников имеют коэффициент подобия k=m:n ⇒ IA:JB=m:n Ясно, что отношение диаметров данных окружностей равно отношению их радиусов, т.е. АС:ВD=m:n.
Вариант решения 2) СА ⊥АВ BD ⊥АВ ⇒ СА и BD- параллельны. Углы С и D равны как накрестлежащие при пересечении параллельных прямых секущей.. Углы при О равны, как вертикальные. Треугольники АСO и DBO подобны по трем углам. OI OJ- медианы этих треугольников. Отношение длин соответствующих элементов подобных треугольников (в частности, длин биссектрис, медиан, высот и серединных перпендикуляров) равно коэффициенту подобия. Следовательно, отношение диаметров данных окружностей ( гипотенуз треугольников) равно отношению их медиан, т.е. АС:ВD=m:n.
угол В = углу АСН т. к. если угол В=х, то угол А=90-х. тогда в треугольнике АСН угол С =90-(90-х)=х;
AH = CA * sinACH = CA*sinB =3*1/3=1;
BH = AB - AH ; следовательно BH = 9-1=8;
ответ: ВН=8.