Введём обозначения.Дан параллелограмм ABCD Высота ВО =3см; Высота ВP=4см В прямоуг. тр-нике ABО катет ВО-против угла30°. Значит AB=2BО =6см Sпар-грамма=AB×BP=6×4=24(см)
4. Назовём медиану, проведённую из точки B, BD. Медианы в треугольнике делят друг друга в отношении 2 : 1, считая от вершины, то есть BO : OD = 2 : 1
Так как прямые EF и AC параллельны, то ∠BAC = ∠BEF как соответственные углы.
Рассмотрим ΔABC и ΔEBF 1) ∠B - общий 2) ∠BAC = ∠BEF - из решения Отсюда следует, что эти треугольники подобны. Коэффициент подобия будет равен отношению BD и BO k = BD : BO = 3x : 2x = 3 : 2
Из подобия AC : EF = 3 : 2 15 : EF = 3 : 2 3EF = 30 EF = 10 см
ответ: 10 см
5. Найдём AB по теореме Пифагора: AB = √(25 + 75) = √100 = 10 см Напротив угла в 30° лежит катет в два раза меньше гипотенузы. AB = 2AC ⇒ ∠ABC = 30°
Наверное найти расстояние от центра окружности до точки Е.
Нетрудно догадаться, что АЕ=8см, а ЕВ=7см. Из центра окружности опускаем перпендикуляр на хорду. (обознацим центр окружности О, а пересечение хорды и перпендикуляра С) . Тогда перпендикуляр делит хорду пополам, а значит АС=7,5 см. Точку О соединим с точкой А. ОА=9см. Треугольник АОС прямоугольный. Поэтому по теореме Пифагора находим ОС. Овет полчается корень из 17. Около 4,1231. Теперь возьмём треугольник ОСЕ. Он тоже прямоугольный. СЕ=0,5см, ОС нам тоже известно, поэтому по теореме Пифагора находим ОЕ.
Высота ВО =3см; Высота ВP=4см
В прямоуг. тр-нике ABО катет ВО-против угла30°.
Значит AB=2BО =6см
Sпар-грамма=AB×BP=6×4=24(см)