S = 336; (полупериметр 48, остальные сомножители 28, 14 и 6)
Отсюда высота к стороне 42 равна H = 2*336/48 = 16;
Далее очевидная пропорция, поскольку верхняя сторона прямоугольника отсекает подобный треугольник (x - сторона II основанию 42, y - сторона II высоте H = 16)
(16 - y)/16 = x/42; (отношение высот равно отношению оснований)
x + y = 20; (дано в условии)
Решаем эту систему 2 уравнений с 2 неизвестными, получаем
Высота правильной четырехугольной пирамиды равна √6 см, а боковое ребро наклонено к плоскости основания под углом 60 градусов. а) Найдите боковое ребро пирамиды б) Найдите площадь боковой поверхности пирамиды -------------- Пусть дана пирамида КАВСД. Пирамила правильная, поэтому основание - правильный четырехугольник - квадрат. Основанием высоты пирамиды является точка пересечения его диагоналей О. Все боковые ребра равны, их проекции равны половине диагонали квадрата. Т.к. боковые ребра равны, перпендикулярное сечение АКС пирамиды - равнобедренный треугольник. А т.к. угол при основании равен 60°, этот треугольник - равносторонний. Высота пирамиды КО=√6, и боковое ребро этого треугольника равно: АС=АК=СК=КО:sin(60°)=√6:{(√3):2}=2√2 Площадь боковой поверхности пирамиды равна сумме площадей ее граней, то есть половине произведения апофемы на периметр основания. Сторону основания найдем из прямоугольного треугольника АДС. Т.к. диагональ квадрата в основании равна 2√2, то его сторона равна 2. ( Можно проверить по т.Пифагора). МО=ДС:2=1 Тогда апофема КМ из треугольника МОК равна по т.Пифагора √7см S бок=(4*2√7):2=4√7 см² —— [email protected]
по формуле Герона считаем площадь,
S = 336; (полупериметр 48, остальные сомножители 28, 14 и 6)
Отсюда высота к стороне 42 равна H = 2*336/48 = 16;
Далее очевидная пропорция, поскольку верхняя сторона прямоугольника отсекает подобный треугольник (x - сторона II основанию 42, y - сторона II высоте H = 16)
(16 - y)/16 = x/42; (отношение высот равно отношению оснований)
x + y = 20; (дано в условии)
Решаем эту систему 2 уравнений с 2 неизвестными, получаем
х = 84/13; y = 176/13;
Интересно, у более чем в 2 раза больше х