Построение сечения.
1. Проводим пряную ЕF до пересечения с продолжениями отрезков
СВ (F1) и СD (Е1). ЕF -линия пересечения секущей плоскости и плоскости основания.
2. Проводим прямую НF1, пересечение этой прямой с ребром ВВ1 -
точка G. GH - линия пересечения секущей плоскости и грани ВВ1С1С.
3. Соединим точки F и G. FG - линия пересечения секущей плоскости и грани АА1В1В.
4. Плоскости АВСD и А1В1С1D1 параллельны, значат линия НК пересечения секущей плоскости и грани А1В1С1D1 будет проходить через точку Н параллельно прямой ЕF.
5. Проводим прямую КЕ1, пересечение этой прямой с ребром DD1 -точка Р. КР -линия пересечения секущей плоскости и грани DD1C1C.
6. Соединим точки Р и Е. РЕ -линия пересечения секущей плоскости и грани АА1D1D.
Нахождение угла.
Угол между плоскостью сечения EFGHKP и плоскостью А1ВD -угол
A1RQ = α, образованный пересечением указанных плоскостей плоскостью, перпендикулярной к обеим плоскостям, то есть перпендикулярной к линии пересечения МN данных двух плоскостей.
Заметим, что этот угол равен углу А1ОС1, так как QL параллельна С10
(так как LО=С1Q, потому что EF - средняя линия прямоугольного треугольника АЕF и АL=LO=C1Q). Половина диагонали основания
(квадрата со стороной а) СО равна а*√2/2.
А тангенс угла С10С равен СС1/СО = а*2/а*√2 = √2.
По таблице тангенсов угол С10С ≈ 55°. Значит и симметричный с ним угол А1ОА =55°, их сумма равна 110°, а дополняющий эти два угла до развернутого искомый угол равен 180°-110°=70°.
ответ: угол между плоскостями FGНКРЕ и A1BD ≈ 70°.
ответ в приложенном рисунке.
ответ:
объяснение:
1. рассмотрим параллелограмм авсд.
s=ah, а= 6 это следует h=4
2.рассмотрим δ аве, в=5, h=4. тогда по теореме пифагора
хво2степени =5 в степени2 - 4 в степени2 =9
х=3, т.е. ае=дк=3, это следует
3. ед=ад-ае=3
4. рассмотрим δвед, по теореме пифагора следует
хво 2 степени=3во 2степени+4во второй степени=25
×=5,т.е. вд=5
5.проведем дополнительную высоту ск с вершины с и соединяем с основанием ад
6. рассмотрим δ аск, ак=9, ск=4⇒ по теореме пифагора
хво 2степени=9во2степени+4 во 2степени=97
×=√97, т.е. ас=√97
280
Объяснение:
пирамида - MPQS
QS = 13
РQ = 15
PS = 4
PS = 37
MQ - высота пирамиды
из треугольника РQS
РQ² = (15)² = 225
PS² +QS² = (4)² + (13)² = 185
РQ²>PS² +QS² =>
треугольник QSP тупоугольный
=>
высота, проведенная к стороне PS - лежит вне треугольника
(дополнительное построение)
QH⊥PS
QН - проекция MH на плоскость основания
=>
MH⊥PS - по теореме трех перпендикулярах
найдем половину периметра треугольника РQS
P = (PQ+PS+QS)/2 = (15+4+13)/2 = 32/2 = 16 ед.
Найдем площадь ΔАВС
(использована формула Герона)
кв.ед.
найдем высоту QH
с формулы для нахождения площади треугольника
S = 1/2 · PS · QH
QH = (2 · S)/PS = 48/4 = 12 ед.
Из прямоугольного треугольника MQH
по теореме Пифагора
c² = a² + b²
a² = c² - b²
MQ² = MH² - QH²
MQ = √(MH² - QH²)
MQ = √(37² - 12²) = √((37 - 12)·(37 + 12)) = √(25 · 49) = 5 · 7 = 35 ед.
Находим объем пирамиды
V = 1/3 · S · MQ = 1/3 · 24 · 35 = 280 ³ ед.