Пирамида имеет в основании квадрат или правильный треугольник?
1. поверхность грани 96/4=24 длина стороны основания 24/4=6
апофема равна высоте к стороне основания, апофему обозначим а
0,5*6*а=24 а=24/3=8
2. поверхность 96/3=32 сторона основания 24/3=8
0,5*8*а=32 а=32/4=8
видим равенство апофем, более детально -
пусть n боковых граней, s = 96/n сторона основания 24/n
0.5*24/n*a=96/n 12a=96 a=8
видим, что можно дать другие числа, а не 96 и 24 и посчитать апофему, она не будет зависеть от числа сторон правильной пирамиды, а только от конкретных значений площади боковых граней и периметра основания.
Он прямоугольный (BH - высота)
Найдём ∠BAH = 90° - ∠ABH = 90° - 40° = 50°
∠ABC = ∠ABH + ∠HBC = 40° + 10° = 50°
∠BAH = ∠ABC = 50° ⇒ ΔABC - равнобедренный.
Угол ∠BCH из ΔBCH = 90° - ∠HBC = 90° - 10° = 80°
CD - высота, проведённая к AB
AB в ΔABC является основанием ⇒ CD не только высота, но и биссектриса ⇒ ∠BCD = ∠DCA = 80°/2 = 40°
Рассмотрим ΔBOC.
∠BCD = ∠BCO = 40°
∠HBC = ∠OBC = 10°
Сумма углов треугольника равна 180° ⇒ ∠BOC + ∠OBC + ∠BCO = 180°
∠BOC + 40° + 10° = 180°
∠BOC = 180° - 50°
∠BOC = 130°