Решение. 1. Из верхнего угла пересечения верхнего меньшего основания и боковой стороны опускаем перпендикуляр на нижнее большее основание - этот перпендикуляр является высотой трапеции. Нужно найти значение высоты. 2. По наклонной боковой стороне получается равнобедренный треугольник (углы 45, 90 и 45 градусов) с катетами по нижнему основанию (5-1=4 см) и катетом-высотой равным также 4 см, так как в равнобедренном треугольники катеты равны друг другу. 3. вычисляем площадь трапеции (полусумма оснований умноженная на высоту) (5+1):2×4 = 6:2×4 = 3×4 = 12 (см²) ответ. площадь трапеции 12 см² (если размеры в сантиметрах)
Ось цилиндра и отрезок АВ - скрещивающиеся прямые, так как эти две прямые не имеют общих точек, и не являюnся параллельными. Цитата: "Расстоянием между скрещивающимися прямыми называется расстояние между одной из скрещивающихся прямых и плоскостью, проходящей через другую прямую параллельно первой". Опустим перпендикуляры АА1 и ВВ1 на противоположные основания. Тогда плоскость АА1ВВ1 будет плоскостью, проходящей через прямую АВ параллельно оси цилиндра (так как АА1 и ВВ1 параллельны оси). Следовательно, искомое расстояние - это перпендикуляр ОН, проведенный из центра основания О к хорде АВ1 и по свойству такого перпендикуляра делящий эту хорду пополам. Найдем по Пифагору длину хорды АВ1: АВ1=√(8²-6²)=2√7. Теперь найдем из треугольника АОН по Пифагору искомое расстояние ОН. ОН=√(АО²-АН²)=√(16-7)=3. ответ: расстояние от отрезка АВ до оси цилиндра равно 3.
ответ: АВ = 18 см, CD = 6 см
Объяснение:
СО : ОВ = 1 : 3
OD : OA = 5 : 15 = 1 : 3
∠AOB = ∠DOC как вертикальные, значит
ΔАОВ подобен ΔDOC по второму признаку.
CD : AB = 1 : 3
CD = 24 - AB
(24 - AB) : AB = 1 : 3
AB = 3(24 - AB)
AB = 72 - 3AB
4AB = 72
AB = 18 см
CD = 24 - 18 = 6 см