Апофема грани, высота пирамиды и расстояние от основания высоты до основания апофемы образуют прямоугольный треугольник. из него найдем половину стороны основания.
1/2 стороны основания= √(4а² - (а√2)²)=4а²-2а²=√2а² и равна а√2
а сторона основания равна 2а√2
Поскольку высота и половина основания равны в этом прямоугольном треугольнике, он - равнобедренный и угол между апофемой и средней линией квадрата в основании, что равносильно углу между боковой гранью и основанием,
равен 45 градусам.
Расстояние от центра основания пирамиды - перпендикуляр к апофеме. Поскольку угол между апофемой и плоскостью основания 45 градусов, получится равнобедренный прямоугольный треугольник с гипотенузой= половине стороны основания и катетами, равными половине апофемы = а.
Расстояние от центра основания до плоскости боковой грани =а
Площадь поверхности пирамиды равна сумме площади основания и площади боковой поверхности.
S основания =(2а√2)²=8а²
S боковая =4* 2а*а√2 =8а²√2
S полная =8а²√2+8а²=8а²(√2+1)
Пусть а прямая, перпендикулярная прямым b и c в плоскости . Тогда
прямая а проходит через точку А пересечения прямых b и c . Докажем, что
прямая а перпендикулярна плоскости .
Проведем произвольную прямую х через точку А в плоскости и
покажем, что она перпендикулярна прямой а. Проведем в плоскости
произвольную прямую, не проходящую через точку А и пересекающую
прямые b , c и х . Пусть точками пересечения будут В , С и Х .
Отложим на прямой а от точки А в разные стороны равные отрезки АА 1 и
АА 2. Треугольник А 1СА 2 равнобедренный, так как отрезок АС является
высотой по условию теоремы и медианой по построению ( АА 1 =АА 2). по
той же причине треугольник А 1 ВА 2 тоже равнобедренный. Следовательно,
треугольники А 1ВС и А 2 ВС равны по трем сторонам.
Из равенства треугольников А 1ВС и А 2ВС следует равенство углов А 1ВХ и
А 2ВХ и, следовательно равенство треугольников А 1ВХ и А 2 ВХ по двум
сторонам и углу между ними. Из равенства сторон А 1Х и А 2Х этих
треугольников заключаем, что треугольник А 1ХА 2 равнобедренный.
Поэтому его медиана ХА является также высотой. А это и значит, что
прямая х перпендикулярна а. По определению прямая а перпендикулярна
плоскости . Теорема доказана.