Радиус вписанной окружности равен половине высоты этой трапеции (высота равна диаметру. )
В трапецию можно вписать окружность, если суммы ее противоположных сторон равны.
8+18=26 - сумма боковых сторон
26:2=13 - боковая сторона.
Опустим из тупого угла высоту на большее основание.
Получим прямоугольный треугольник с гипотенузой 13, катетом, равным полуразности оснований и равным (18-8):2, и вторым катетом - высотой трапеции.
По теореме Пифагора диаметр окружности равен
√(13²-5²)=12см
Радиус равен половине диаметра
12:2=6 см
ответ: радиус вписанной окружности в трапцию равен 6 см
BL=l(не известна), BC=b , AB=a(не известна), AL=m, LC=n(тоже не известна)
l=b-m
l²=ab-mn (формула нахождения длины биссектрисы), m/a=n/b(свойство бисс-сы) a=mb/n
Вобщем теперь тебе надо решить уравнение(b-m)²=mb²/n - mn и из него найти n зная b и m)
потом когда найдешь n подставишь его и найдешь а
Зная а найдешь b и после этого можешь вычислять углы)
Обозначим угол при основании треугольника α)
a/sinα=b/sin(180-2α)
a/sinα=b/sin2α
a*sin2α=b*sinα
a*2sinα*cosα=b*sinα
cosα=b/2a когда вычислишь косинус то найдешь угол α) а потом сможешь найти еще один угол треугольника равный 180-2α) Так найдешь все углы