Формула длины высоты через составные отрезки гипотенузы: h = √AO*OC, где АО иОС отрезки,равные 25см и 9см. Тогда высота,проведённая к гипотенузе AС прямоугольного треугольника ABC равна √25*9 = √225 = 15. В прямоугольном треугольнике АВО АВ является гипотенузой, а катеты это отрезок АО = 25 и высота ВО = 15.
Значит гипотенуза АВ треугольника АВО АВ=√25²+15² = √850 = 5√34
Но АВ это как раз больший катет треугольника АВС он равен 5√34
А есть еще теорема о высоте прямоугольного треугольника. Из которой вытекает, что катет
АВ² = АС*АО (квадрат катета равен произведению гипотенузы на прилежащий к этому катету отрезок гипотенузы, на которые высота делит гипотенузу)
Тогда АВ = √34*25 = √850 = 5√34
точка а находится на одинаковом расстоянии от всех вершин равностороннего треугольника, => точка а проектируется в центр правильного треугольника.
найти длину перпендикуляра н.
центр правильного треугольника - точка пересечения медиан, высот, биссектрис, в которой они делятся в отношении 2: 3, считая от вершины.
высота h правильного треугольника вычисляется по формуле: h=a√3/2.
h=(4√3)*√3/2, h=6 см.
рассмотрим прямоугольный треугольник: катет - высота н, катет - (2/3)h=4 см, гипотенуза - расстояние от точки а до вершин треугольника =5 см.
по теореме пифагора: 5²=н²+4². н=3 см
ответ: расстояние от точки а до плоскости треугольника 3 см
ABCD-параллелограмм
AB=CD
BC=AD
P=2*(AB+BC)
1)18.4=2*(3+BC)
BC=6.2
2) 18.4=2*(7+BC)
BC=2.2