Если все прямые лежат в одной плоскости, через них можно провести только одну плоскость. В условии сказано, что плоскости проведены через каждые две из них. Совсем необязательно они должны быть перпендикулярны друг другу. Через две пересекающиеся прямые всегда можно провести одну и только одну плоскость. Или Через любые три точки пространства, не лежащие на одной прямой, можно провести одну и только одну плоскость. Отметим точку пересечения 0, точки на каждой прямой 1, 2, 3 соответственно Проведено три плоскости. См. рисунок.
1) Назовем треуг. АBC. Рассмотрим его. Трег. равнобедр. значит его бок.стороны по 13 см. Проведем высоту из вершины В( не из основания, а из верхнего угла треуг.) Высота по св-тву равнобедр. треуг. явл. медианой и биссек. Значит высота ВD поделит основание АС на равные части( 10:2=5). Рассмотрим треуг. АВD. BD- катет, значит найдем его по теореме Пифагора. ( 13-5 возведем в квадрат: 169-25=144. 144 это 12 в квадрате.) BD=12. А дальше просто по формуле найдем площадь. S= 1/2 a•h S= 1/2 10•12=60 ответ:60 см2.