Чертеж во вложении. 1) Проведем высоты ВВ1 и СС1. Получим квадрат (ВС=ВВ1 по усл), В1С1=12 см. 2) Рассмотрим ΔАВВ1: он прямоугольный, угол А = 45° (по усл), значит ВВ1=АВ1=12 см. 3) ΔАВВ1=ΔСС1D (по гипотенузе и острому углу: угол A= углу D по условию, АВ=CD тр-я равнобедр). ⇒AB1=C1D=12см 4) AD=AB1+B1C+C1D=3*12см=36 см. 5) Sabcd= 1/2*ВВ1*(ВС+AD)=1/2*12*(12+36)=6см*48см=288 см^2 ответ: 228 cм^2.
Sin = отношение противолежащего катета к гипотенузе cos = отношение прилежащего катета к гипотенузе tg = отношение противолезащего катета к прилежащему Центральный угол равен дуге, на которую он опирается вписанный угол равен половине дуги, на которую он опирается Теорема Пифагора: Квадрат гипотенузы равен сумме квадратов катетов радиус - прямая, проведенная из центра окружности к окружности центр. угол(1) и впис.угол (2), касательная к окружности(3) - на картинке
Треугольники бывают: равнобедренные, равносторонние, прямоугольные и тупоугольные 4 замечательные точки: точка пересечения высот, точка пересечения медиан, точка пересечения биссектрисс, серединный перпендикуляр в равнобедренном треугольнике две стороны равны, и углы при основании равны в прямоугольном треугольнике один из углов равен 90°
Sin = отношение противолежащего катета к гипотенузе cos = отношение прилежащего катета к гипотенузе tg = отношение противолезащего катета к прилежащему Центральный угол равен дуге, на которую он опирается вписанный угол равен половине дуги, на которую он опирается Теорема Пифагора: Квадрат гипотенузы равен сумме квадратов катетов радиус - прямая, проведенная из центра окружности к окружности центр. угол(1) и впис.угол (2), касательная к окружности(3) - на картинке
Треугольники бывают: равнобедренные, равносторонние, прямоугольные и тупоугольные 4 замечательные точки: точка пересечения высот, точка пересечения медиан, точка пересечения биссектрисс, серединный перпендикуляр в равнобедренном треугольнике две стороны равны, и углы при основании равны в прямоугольном треугольнике один из углов равен 90°
1) Проведем высоты ВВ1 и СС1. Получим квадрат (ВС=ВВ1 по усл), В1С1=12 см.
2) Рассмотрим ΔАВВ1: он прямоугольный, угол А = 45° (по усл), значит ВВ1=АВ1=12 см.
3) ΔАВВ1=ΔСС1D (по гипотенузе и острому углу: угол A= углу D по условию, АВ=CD тр-я равнобедр). ⇒AB1=C1D=12см
4) AD=AB1+B1C+C1D=3*12см=36 см.
5) Sabcd= 1/2*ВВ1*(ВС+AD)=1/2*12*(12+36)=6см*48см=288 см^2
ответ: 228 cм^2.