1) Треугольники АОD и ВОС подобны (по 1 признаку, тк углы между диагональю и основанием равны как накрест лежащие при пересечении параллельных секущей), значит отношение их площадей равно квадрату коэффициента подобия: . Отсюда S=45/9=5 2) По теореме средняя линия треугольника равна половине стороны, значит: 4х+4х+8х=45, 16х=45, х=45/16. Вычислим стороны: 4·45/16=11,25; 4·45/16=11,25; 8·45/16=22,5. ответ: 11,25; 11,25; 22,16 3)Треугольники АВС и ВЕF подобны, значит их сходственные стороны пропорциональны, те АС/ЕF=3/2 (медианы в точке пересечения делятся в отношении 2:1). ЕF=15·2/3=10 6) ВС-средняя линия треугольника АКD, значит равна половине АD, те =6, значит ВС+AD=12+6=18
1) Треугольники АОD и ВОС подобны (по 1 признаку, тк углы между диагональю и основанием равны как накрест лежащие при пересечении параллельных секущей), значит отношение их площадей равно квадрату коэффициента подобия: . Отсюда S=45/9=5 2) По теореме средняя линия треугольника равна половине стороны, значит: 4х+4х+8х=45, 16х=45, х=45/16. Вычислим стороны: 4·45/16=11,25; 4·45/16=11,25; 8·45/16=22,5. ответ: 11,25; 11,25; 22,16 3)Треугольники АВС и ВЕF подобны, значит их сходственные стороны пропорциональны, те АС/ЕF=3/2 (медианы в точке пересечения делятся в отношении 2:1). ЕF=15·2/3=10 6) ВС-средняя линия треугольника АКD, значит равна половине АD, те =6, значит ВС+AD=12+6=18
По теореме Пифагора BD=корень(AB^2-AD^2)=корень(20^2-12^2)=16 cм
Гипотенуза равна отношению квадрата катета к его проекции
BC=AB^2\BD=20^2\16=25 cм
По теореме Пифагора AC=корень(BC^2-AB^2)=25^2-20^2=15 см
По определению cos C=AC\BC=15\25=0.6
ответ: 25 см, 0.6