Растояние от вершины прямого угла до середины гипотенузы равно медиане.
В прямоугольном треугольнике катет, противолежащий углу 30 градусов, равен половине гипотенузы. Угол, прилежащий меньшему катету, равен 90-30=60 гр.
Рассмотрим реугольник, образованный меньшим катетом, медианой и половиной гипотенузы. Т.к. две стороны в нем равны (катет и половина гипотенузы), он равнобедренный с основанием медианой. Отсюда следует, что углы при основании равны. Зная, что уголмежду боковыми сторонами равен 60гр, а сумма 3х углов тр-ка 180гр, получаем величина угла при основании (180-60):2=60(гр.). Таким образом, в рассмотренном треугольнике все углы равны 60гр., тр-к равностороний.
В равностороннем треугольнике все стороны равны. Медиана равна меньшему катету.
Давай предположим что у нас есть трапеция ABCD. AB и CD боковые, BC и AD основания. Нам известно что BC + AD = 44. Пусть тогда угол А = 60°. Теперь давай проведем перпендикуляр (высоту, отрезок) от точки B к стороне AD. Получаем треугольник ABE ( E это точка куда опущен перпендикуляр.) По свойству сумма углов треугольника равна 180°. То, если угол BEA равен 90°, а угол А равен 60°, следовательно угол АВЕ равен 30°. По свойству напротив угла в 30° лежит отрезок равный половине гипотенузы. Получается если АВ это гипотенуза и равна она 24 см, то АЕ будет равен половине АВ, т.е. АЕ=АВ : 2=24:2= 12 см. Сторона АЕ равна 12 см. Следовательно если мы опустим из точки С перпендикуляр к стороне АD то будет то же самое как с другим треугольником. Т.е. AE=DF=12 см. Если ВС+АD=44 см, а АЕ=DF=12 см, то получаем уравнение
тр.ABC-прямоугольный
AC=2см
BD-медиана
BD=2 см
Найти:
AB-?
Решение:
BD-медиана⇒AD=DC=1 (т.к. медиана делит сторону пополам)
Рассмотрим треугольник DBC-прямоугольный
Рассмотрим треугольник ABC-прямоугольный
ответ:√7