Если у вас есть две окружности, и вы возьмете все точки, такие, что куски касательных из них к этим окружностям равны, то эти точки будут образовывать прямую, которая называется радикальной осью двух окружностей. Поэтому в вашей задаче у вас тоже две окружности, только вторая окружность имеет радиус 0 и выродилась в точку А. Точки N и M - это две точки, куски касательных от которых к этим окружностям равны. Значит, они лежат на радикальной оси. Значит, прямая MN и есть радикальная ось. А значит куски касательных от любой точки на ней до окружностей равны.
1. По правилу определения ромба мы знаем, что у ромба все стороны равны, следовательно рассмотрит векторы его сторон:
вектор MN=(5-2;3-2)=(3;1)
Вектор Nk=(6-5;6-3)=(1;3)
вектор Kp=(-3;-1)
ВЕКтор РМ=(1;3)
Теперь объединяем это фигурной скобкой и пишем , следовательно MN=NK=KP=PM, а из этого следуют что четырёх угольник MNPK - квадрат, по определению.
2. По свойству ромба, у него диагонали не равны, следовательно рассмотрим векторы -диагонали.
МК=(3;3)
NP=(-2;2)
Из этого следует, что диагонали квадрата не равны, следовательно это ромб, по определению
cos F = (5^2+7^2-3^2)/(2*5*7) = 13/14
Квадрат длины стороны AE равен
AE^2 = 7^2 + 6.5^2 - 2*7*6.5*13/14 = 27/4
AE = 3/2 * sqrt(3)
Заметим, что AE^2 + AP^2 = EP^2, треугольник APE - прямоугольный. Центр описанной около APE окружности лежит на середине гипотенузы PE, вокруг EAF - на середине EF.
Отрезок, соединяющий центры окружностей - средняя линия треугольника PEF;
d = 5/2 = 2.5
2d = 5