Средняя линия прямоугольной трапеции равна 6 см. острый угол равен 30. точка m удалена от плоскости трапеции на расстояние,равное 4 см, и находится на равном расстоянии от ее сторон. найдите расстояние от точки m до сторон трапеции.
Из условия следует, что точка М проецируется в центр окружности, вписанной в трапецию. Тогда средняя линия равна r+(r/sin 30) = 3r = 6 cм. r = 6/3 = 2 cм. Расстояние от точки М до сторон L = √(H²+r²) = √(16+4) = √20 = 2√5 cм.
Симметрия относительно точки называется центральная симметрия : чертишь фигуру внутри или снаружи нее ставишь точку о, соединяешь все точки фигуры с точкой о и продолжаешь за эту точку, измеряешь расстояние от каждой точки до точки о и такое же расстояние откладываешь на продолжениях соответствующих прямых, соединяешь полученные точки. симметрия относительно прямой еащывается осевая симметрия : строишь фигуру, за этой фигурой с любой стороны чертишь прямую (не важно в какую сторону она наклонена) , от каждой точки фигуры ппроводишь перпендикуляр к данной прямой и продолжаешь его за прямую, измеряешь расстояние от точки до прямой и отмечаешь такое же расстояние от прямой в противоположную сторону на продолжении прямой, соединяешь эти точки.поворот: чертишь фигуру, за этой фигурой ставишь точку о, соединяешь все точки фигуры с этой точкой о, прикладываешь транспрортир и откладываешь столько градусов сколько хочешь (со всеми сторонами должен быть один и тот же угол) деляешь это со всеми точками фигуры, соединяешь полученые точки. перенос: чертишь фигуру, справа от чертежа чертишь вектор определенной длины в любую сторону, все точки фигуры переносишь на этот вектор ( т е в определенном заданном раннее направлении, на определенный промежуток)содиняешь эти точки
Вравнобедренном треугольнике высота к основанию и медиана к основанию - это одно и то же. а расстояние от середины боковой стороны до основания в 2 раза меньше, чем расстояние от вершины, то есть - высота к основанию.половина высоты к основанию равна 9, значит вся эта высота (она же - медиана) равна 18. точка пересечения медиан делит медиану на части в отношении 1/2, считая от стороны, то есть - в данном случае - на отрезки 6 и 12 см (отношение 1/2, сумма 18). поскольку медиана эта перпендикулярна основанию, то 6 см - и есть расстояние от точки пересечения медиан до основания. ответ 6 см.
Тогда средняя линия равна r+(r/sin 30) = 3r = 6 cм.
r = 6/3 = 2 cм.
Расстояние от точки М до сторон L = √(H²+r²) = √(16+4) = √20 = 2√5 cм.