(1)
Сумма двух смежных углов- 180 градусов, тогда второй угол 180-48=132 градуса
(2)
часы- 360 градусов, тогда 360/12=30 градусов- один промежуток, тогда между минутной и секундной стрелкой в 5 часов- 5 промежутков(по 1 часу), тогда 30*5=150 градусов
(3)
сумма двух смежных углов- 180 градусов, тогда складываем отношения:
1. 8+10=18 (сумма отношений)
2. 180/18=10 градусов(на одно отношение)
3. 10*8=80 градусов- первый угол и 10*10=100 градусов- второй угол
Объяснение:
1.- 132 градуса
2.- 150 градусов
3.- 80 и 100 градусов
1. по свойству параллельных прямых и секущей <ВСА=<САD=40° (накрест лежащие углы)
рассмотрим ∆ABC AB=BC=> ∆ABC равнобедренный =><ВАС=<ВСА=40°
<А=<САD+<BAC= 40°+40°=80°
<В=180°-2*<ВСА=180°-2*40°=100°
т.к. ABCD AB=CD=> трапеция равнобедренная=> <D=80° <C=100°
2. дополнительное построение СН; СН_L АD
Рассмотрим ∆CHD <H=90°
<DCH=90°-<D=45° => ∆CHD равнобедренный прямоугольный треугольник => СН=НD
т.к. СН _L AD; AB _L AD и BC||AD=>
AH=10; CH=10 => HD=10
AD= AH+HD=10+10=20
На рисунке - сечение сферы, проходящее через ее центр и перпендикулярное данным сечениям.
1. Пусть оба сечения находятся по одну сторону от центра сферы.
АВ - диаметр большего сечения, К - его центр,
CD - диаметр меньшего сечения, Н - его центр.
Отрезок, соединяющий центр сферы и центр сечения, перпендикулярен сечению и является расстоянием от центра сферы до него.
Тогда ОК - расстояние от центра сферы до большего сечения, ОН - до меньшего.
КН = 3 см,
ОК = х см.
Из прямоугольных треугольников АКО и СНО получаем систему уравнений:
x² = R² - 144
(x + 3)² = R² - 81
x² = R² - 144
x² + 6x + 9 = R² - 81 вычтем из второго первое:
6x + 9 = 63
6x = 54
x = 9
R = √(144 + 81) = √225 = 15 см
Sсф = 4πR² = 4π · 225 = 900π см²
2. Данные сечения находятся по разные стороны от центра сферы.
Из тех же прямоугольных треугольников получаем систему:
x² = R² - 144
(3 - x)² = R² - 81
x² = R² - 144
9 - 6x + x² = R² - 81 вычтем из первого второе
6x - 9 = - 63
6x = - 54
x = - 9 не подходит по смыслу задачи.
Значит, второй вариант расположения сечений невозможен.
ответ: Sсф = 900π см²