Основные научные достижения арабских ученых относятся ко времени Раннего Средневековья. Значителен был вклад арабов в математическую науку. В VIII в. – и особенно в IX-Х вв. – арабские ученые сделали важные открытия в области геометрии, тригонометрии. Живший в Х в. Абу-л-Вафа вывел теорему синусов сферической тригонометрии, вычислил таблицу синусов с интервалом в 15°, ввел отрезки, соответствующие секансу и косекансу. Поэт, ученый Омар Хайям написал «Алгебру» – выдающееся сочинение, в котором содержалось систематическое исследование уравнений третьей степени. Он также успешно занимался проблемой иррациональных и действительных чисел. Ему принадлежит философский трактат «О всеобщности бытия». В 1079 г. он ввел календарь, более точный, чем современный григорианский. В Багдадском халифате узнали о математических открытиях индийцев в VIII в. Сразу же подхваченная арабами цифровая система стала известна в Западной Европе под названием арабской к XII в. (через арабские владения в Испании).
Если угол при основании 45 градусов, то прямоугольный треугольник, где высота трапеции стороной этого треугольника, а бедро трапеции гипотенузой - равнобедренный, так как второй угол этого прямоугольного треугольника тоже 90-45=45 градусов. Значит, кусочек нижнего основания трапеции, отсекаемый ее высотой равен тоже 3 см. Проведем вторую высоту трапеции, тогда получим, что высоты делят большое основание на три части - две по 3 см и одна - как малое основание 5 см. Следовательно, большое основание имеет размер 3+5+3=11 см.