Пусть сторона основания равна а, боковое ребро - b. Диагональ боковой грани равна: d=√(a²+b²). В тр-ке, образованном диагональю, призмы, диагональю боковой грани и стороной основания, a/d=tgα. a/(√a²+b²)=1/√2, возведём все в квадрат и упростим, 2а²=a²+b², a²=b², a=b. Сторона основания равна боковому ребру, значит данная призма - куб. В кубе все грани равны. Сумма оснований - сумма двух граней, боковая сторона - сумма четырёх граней. ответ: Площадь боковой поверхности в два раза больше суммы площадей оснований.
S = πR² = π · 10² = 100π см²
Площадь полукруга:
S₁ = 1/2 S = 100π / 2 = 50π см²