∠MPE = ∠MNK как соответственные при пересечении параллельных прямых РЕ и NK секущей MN, угол при вершине М - общий для треугольников MPE и MNK, значит эти треугольники подобны по двум углам.
Коэффициент подобия:
k = MP : MN = 8 : 12 = 3 : 4
а) ME : MK = 3 : 4
MK = 4ME / 3 = 4 · 6 / 3 = 8
б) PE : NK = k = 3 : 4
в) Площади подобных треугольников относятся как квадрат коэффициента подобия:
Из вершин меньшего основания надо провести высоты к большему. Образуются два равных треугольника(равны, потому что трапеция равнобедренная) и прямоугольник(противоположные стороны будут параллельны и углы по 90 градусов). Тогда большее основание будет состоять из двух равных кусочков и куска = 5 м. Тогда эти два кусочка равны по (11-5):2=6:2=3. И по теореме Пифагора(квадрат гипотенузы=сумма квадратов катетов)(высота•высота=5•5-3•3=25-9=16. Высота=4) или по Пифагоровой тройке. Есть сторона=5 и есть сторона = 3. Значит, последняя =4. ответ:4м.
Из вершин меньшего основания надо провести высоты к большему. Образуются два равных треугольника(равны, потому что трапеция равнобедренная) и прямоугольник(противоположные стороны будут параллельны и углы по 90 градусов). Тогда большее основание будет состоять из двух равных кусочков и куска = 5 м. Тогда эти два кусочка равны по (11-5):2=6:2=3. И по теореме Пифагора(квадрат гипотенузы=сумма квадратов катетов)(высота•высота=5•5-3•3=25-9=16. Высота=4) или по Пифагоровой тройке. Есть сторона=5 и есть сторона = 3. Значит, последняя =4. ответ:4м.
∠MPE = ∠MNK как соответственные при пересечении параллельных прямых РЕ и NK секущей MN, угол при вершине М - общий для треугольников MPE и MNK, значит эти треугольники подобны по двум углам.
Коэффициент подобия:
k = MP : MN = 8 : 12 = 3 : 4
а) ME : MK = 3 : 4
MK = 4ME / 3 = 4 · 6 / 3 = 8
б) PE : NK = k = 3 : 4
в) Площади подобных треугольников относятся как квадрат коэффициента подобия:
Smep : Smkn = k² = 9 : 16