51 см или 57 см.
Объяснение:
Треугольник равнобедренный, а значит какие-то две стороны равны. Либо две стороны равны 15 см, либо две стороны равны 21 см.
Но существует неравенство треугольника, из которого следует, что одна из сторон обязана быть меньше, чем сумма двух других.
То есть в треугольнике АВС: АС < АВ+ВС; АВ < АС+ВС; ВС < АВ+АС
Проверим, какой равнобедренный треугольник с представленными сторонами может существовать:
Допустим АВ = 15 см, АС = 21 см, а ВС = 15 см.
Тогда АВ < АС+ВС (15 < 21+15 - верно), АС < АВ+ВС (21 < 15+15 - верно),
ВС < АВ+АС (15 < 15+21 - верно)
Такой треугольник может существовать.
Проверим второй вариант:
АВ = 15 см, АС = 21 см, а ВС = 21 см.
Тогда АВ < АС+ВС (15 < 21+21 - верно), АС < АВ+ВС (21 < 15+21 - верно),
ВС < АВ+АС (21 < 15+21 - верно)
И такой треугольник может существовать.
Ну а теперь найдем два варианта периметра этого треугольника (периметр - это сумма всех его сторон).
Периметр 1: 15см+21см+15см = 51см.
Периметр 2: 15+21см+21см = 57 см.
Сумма 4-х углов четырехугольника равна 360. Поскольку в паралелограмме противоположные углы равны, значит сумма двух соседних углов равна 180. Отнимаем 46 и делим на 2, получаем один угол 67, второй (+46) равен 113.
можно так:
Такие углы не могут быть противолежащими, так как они не равны. Значит, они прилежащие и их сумма равна 180°. Пусть один из углов равен х, тогда другой равен х+46°, по условию. Следовательно х+(х+46)=180
2х+46=180
2х=180-46
2х=134
х=67-первый,а второй х+46°=67+46=113 градусов