Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами равны, то треугольники подобны.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ . Доказать: ΔАВС подобен ΔА₁В₁С₁. Доказательство: Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) . Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках: АВ₂ : А₁В₁ = АС : А₁С₁. Сравним полученную пропорцию с данной в условии: АВ : А₁В₁ = АС : А₁С₁ Значит, АВ₂ = АВ. Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию). Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит ΔАВС подобен ΔА₁В₁С₁. Доказано.
В прямоугольном параллелепипеде ABCDA₁B₁C₁D₁ известно, что D₁B=√26, BB₁=3 A₁D₁=4 Найдите длину ребра A₁B₁.
Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений:
D²=a²+b²+c². Для данного параллелепипеда :
D₁B² =D₁A₁²+B₁B₁²+A₁B₁²
(√26)²=4²+3²+A₁B₁² откуда
А₁В₁=√(26-16-9)=1
-------------------
Если забыли данную выше формулу, т.Пифагора наверняка все помнят.
Все ребра прямоугольного параллелепипеда перпендикулярны основаниям, а его грани и диагональные сечения - прямоугольники.
Из ∆ D₁B₁B по т.Пифагора D₁B₁²=(D₁B²-BB₁²=(26-9)=17
Из ∆ A₁B₁D₁ по т.Пифаогра А₁В₁=√(D₁B₁² - A₁D₁²)=√(17-16)=1