Задача 1.
S=kh
Соответственно k=S:h
60:12=5 - средняя линия трапеции
Задача 2.Площадь трапеции вычисляется по формуле a+b/2*h подставляем известные нам значения в формулу получаем 8*(8+b/2)=72
=128+b=144
b=16
Задача 3.
S=kh
Соответственно k=S:h
63:7=9 - средняя линия трапеции
Задача 4.
12*1+b/2=60
1+b=5
b=4
Задача 5
рассмотрим треугольник, образованный высотой, опущенной на основание и наклонной боковой стороной. Он прямоугольный и равнобедренный. Значит высота трапеции равна разнице между основаниями 9-5=4
площадь равна высоте умноженной на полусумму оснований 4 * (9+5)/2 =28
Приведем уравнение заданной прямой к общему виду:
5x + 2y + 4 = 0,
2y = -5x - 4 (делим на 2 обе части уравнения),
у = -2,5x - 2.
Уравнение прямой, параллельной данной, запишем, используя формулу: y - y0 = k(x - x0), где k - угловой коэффициент, x0,y0 - координаты точки, принадлежащей графику, в данном случае точки М. Так как k = -2,5, x0 = 2, y0 = 4, получим:
у – 4 = -2,5 * (х – 2),
у - 4 = -2,5х + 5,
у = -2,5х + 9.
ответ: уравнение параллельной прямой, проходящей через точку М(2; 4), имеет вид у = -2,5х + 9
угол К = х, угол М = 3х, угол Н = х+30.
Зная, что сумма углов треугольника равна 180°, можно выразить угол Н и так:
180 - х -3х = 180 - 4х
Т.е. получаем, что:
х+30 = 180 - 4х
Решаем это уравнение:
180 - 30 = 5х
5х = 150
х = 30
Таким образом, угол К = 30°,
угол М = 3х30 = 90°,
угол Н = 30+30 = 60°