1) треугольник АВС и треугольник А1В1С1 равны
значит ВА=В1А1и угол А=угол А1
Прямоугольные треугольники DВА и D1В1А1 равны за гипотенузой(ВА=В1А1) и острым углом(угол А=угол А1)
Из равности треугольников слдует равенство ВD = В1D1, то есть требуемое
2) Прямоугольные треугольники ADK и CEP равны за первым признаком равенства треугольников
угол K=угол Р=90 градусов АК=РС,DK=РЕ по условию.
Из равенства треугольников следует равенство углов
угол А=угол С, а за признаком равнобедрнного треугольника
треугольник АВС равнобедренный и АВ=ВС, что и требовалось доказать.
1) треугольник АВС и треугольник А1В1С1 равны
значит ВА=В1А1и угол А=угол А1
Прямоугольные треугольники DВА и D1В1А1 равны за гипотенузой(ВА=В1А1) и острым углом(угол А=угол А1)
Из равности треугольников слдует равенство ВD = В1D1, то есть требуемое
2) Прямоугольные треугольники ADK и CEP равны за первым признаком равенства треугольников
угол K=угол Р=90 градусов АК=РС,DK=РЕ по условию.
Из равенства треугольников следует равенство углов
угол А=угол С, а за признаком равнобедрнного треугольника
треугольник АВС равнобедренный и АВ=ВС, что и требовалось доказать.
Основание правильного шестиугольника состоит из шести правильных треугольников.
Площадь правильного треугольника находят по формуле:
S=(а²√3):4 S=4√3):4=√3 Площадь правильного шестиугольника в основании пирамиды:
S=6√3
Высоту найдем из прямоугольного треугольника АВО: Так как ребро образует с с диагональю основания угол 60°, высота пирамиды ВО равна
H=ВО=2:ctg (60°)= 2·1/√3=2√3 Можно найти высоту и по т. Пифагора с тем же результатом. V= 2√3∙6 √3:3=12 (кубических единиц)