если все числа целые и периметр = 5, то стороны трапеции 1, 1, 1 и 2.
т.е. это равнобокая трапеция, у которой углы при основаниях равны.
Пусть трапеция АВСD, АВ и СD - бока =1 каждая, ВС - малое основание =1, AD - большое основание =2.
Из точки В опустим высоту BH
Рассмотрим полученный треугольник АВН
АВ=1
АН = (AD-ВС)/2=0,5
косинус угла А = АН/АВ = 0,5
следовательно, угол А=60градусов.
Угол D = углу А, т.к. трапеция равнобокая
следовательно сумма углов при большем основании (т.е. А и D) = 120
ответ: Г
ВК=АВ/2, значит ВК= 1/2, а ВК перпендикульярна АД, следовательно угол А = 30 гр. (т.к. если катет равен половине гипотинузы то угол лежащий против этого катета равен 30 гр.)
Угол А=углу С, т.к. АВСД - параллелограмм.
Угол АВК=60 гр., а угол В = 60+90=150 гр.
угол В= углу Д.