Плоскости α и β параллельны. Через точку M, находящуюся между этими плоскостями, проведены две прямые. Одна из них пересекает плоскости α и β в точках A₁ и B₁, а другая — в точках A₂ и B₂ соответственно . Найдите отрезок A₁A₂, если он на 1 см меньше отрезка B₁B₂, MA₂ = 4 см, A₂B₂ = 10 см.
Объяснение:
1) Две пересекающиеся прямые А₁В₁ и А₂В₂ определяют плоскость
(А₁А₂ В₂) единственным образом ( аксиома). Эта плоскость пересекает параллельные плоскости α и β по параллельным прямым А₁А₂ и В₁В₂( свойство).
2) ΔМА₁А₂~ΔMB₁B₂ по 2-м углам : ∠А₁МА₂=∠B₁МB₂ как вертикальные , ∠А₁А₂М =∠В₁В₂М как накрест лежащие при А₁А₂ || В₁В₂, А₂В₂-секущая. Поэтому сходственные стороны пропорциональны
А₁А₂ : В₁В₂ = АМА₂ : МВ₂
А₁А₂ : (А₁А₂+1) = 4: ( 10-4)
4(А₁А₂+1)=А₁А₂*6 ⇒ А₁А₂= 2 cм
Два шара.
Радиусы шаров равны 8,8 см и 6,6 см.
Найти:Радиус шара, площадь поверхности которого равна сумме площадей их поверхностей - ?
Решение:Пусть R₁ - радиус одного шара (8,8 см), тогда R₂ - радиус другого шара (6,6 см).
Также R₃ - неизвестный радиус шара, площадь поверхности которого равна сумме площадей поверхностей изначально данных шаров.
S полн поверхности = 4πR²
S полн поверхности (R₁) = π(4 * 8,8²) = 309,76π см²
S полн поверхности (R₂) = π(4 * 6,6²) = 174,24π см².
Итак, по условию сказано, что есть какой-то шар, площадь поверхности которого равна сумме площадей поверхности изначально данных шаров.
⇒ S полн поверхности (R₃) = 309,76π + 174,24π = 484π см².
S полн поверхности (R₃) = 4πR² = 484π см² ⇒ R = √(484/4) = √121 = 11 см.
Итак, R₃ = 11 см.
ответ: 11 см.
По теореме Пифагора:
Площадь прямоугольного треугольника равна половине произведения катетов