Ритмичность — это периодическая повторяемость каких-либо явлений и процессов во времени. Ритмичность характерна и для географической оболочки. Ритмы есть как в живой, так и в неживой природе. Однако в живой природе они сформировались вследствие ритмов неживой природы.
Ритмичность — это периодическая повторяемость каких-либо явлений и процессов во времени. Ритмичность характерна и для географической оболочки. Ритмы есть как в живой, так и в неживой природе. Однако в живой природе они сформировались вследствие ритмов неживой природы.
Целостность географической оболочки проявляется в том, что изменение одного компонента природного комплекса неизбежно вызывает изменение всех остальных и всей системы, как целого. К тому же, изменения, произошедшие в одном месте, отражаются на всей оболочке, а иногда на какой-либо ее части – в другом месте.
Зональность – это закономерное изменение природных компонентов и природных комплексов по направлению от экватора к полюсам. Зональность обусловлена неодинаковым количеством поступающего на разные широты тепла в связи с шарообразной формой Земли. Зональны климат, растительность, почвы, животный мир.
Дано:
AP=PN
KP=PM
AK = 24
Доказать: ΔAPK=ΔMPN
Найти: MN
Рассмотрим Δ APK и ΔMPN, они равны, потому что AP=PN (по условию), KP=PM (по условию), ∠APK = ∠MPN (вертикальные углы), что и требовалось доказать. Так как треугольники равны, а значит они имеют равные стороны и углы, отсюда MN=AK=24
ответ: доказано; 24.
№3
Дано:
BA=DC
AD=BC
∠CAD=37
Доказать: ΔABC = ΔADC
Найти: ∠BCA
ΔABC=ΔADC, потому что AB=DC (по условию), AD=BC (по условию), AC -общая сторона, это третий признак равенства треугольников, что и требовалось доказать. В равных треугольниках против равных углов лежат равные стороны, а значит ∠BCA = ∠CAD = 37
Значит, треугольники ABC и СDA, составляющие ромб ABCD, - равнобедренные.
Площадь треугольника равна S = 1/2 a*h, где а = |АС| - основание/, которое является диагональю ромба, а h - высота, являющаяся частью второй диагонали - BD.
Треугольники ABC и СDA равны по 3 сторонам (боковые стороны = стороны ромба равны, а основание = диагональ ромба - общее) .
Поэтому площадь этих треугольников равна, и, следовательно, высоты тоже равны. Т. е. h = 1/2|BD|.
Тогда S(ABCD) = 2S(ABC) = 2*1/2*|AC|*1/2|BD| = 1/2|AC|*|BD|