Задача 1. Треугольник BOA = COD по первому признаку, так как AO = OD, BO = OC по условию; Угол BOA = COD как вертикальные.Из равенства треугольника BOA = COD следует, что соответствующие углы равны, то есть угол BAO = CDO
Задача 2. 1) ΔАВС и ΔАДС: АС-- общая,∠ВАС=∠ДАС,∠ВСА=∠ДСА--по условию,значит,ΔВАС=ΔДАС по стороне и 2 прилежащим углам;ТогдаАВ=АД и ВС=ДС;
2)Пусть О=АС∩ВД(точка пересечения диагоналей)
ΔВАО=ΔДАО т.к. АВ=АД,АО--общая,∠ВАО=∠ДАО --ПО 1-му признаку равенства тр-ов,значит,ВО=ДО; ∠ВОА=∠ДОА=180°:2=90°⇒ВД⊥АС
или так;
В ΔАВД АО ЯВЛЯЕТСЯ согласно доказанному медианой, биссектрисой ,а значит и высотой,т.е. АО⊥ВД ⇒АС⊥ВД.
Объяснение:
|AB|= 3 см
|BC|= 4 см
|DC|= 4 см
|MC|= |AB:2 + BC| = √1,5²+4² = √18,25 = 5√0,73 ≈ 4,3 см
|MA|=|BA:2|= 1,5 см
|CB|= |-BC|= 4 см
|AC|= |AB + BC| = √3²+4² = 5 см
ответ: 5 см