Параллелограмм – четырёхугольник, у которого противолежащие стороны попарно параллельны, то есть лежат на параллельных прямых. Противоположные стороны параллелограмма попарно равны. Признаки: 1) Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник будет являться параллелограммом. 2)Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник будет параллелограммом. 3) Если в четырехугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырехугольник будет являться параллелограммом. 1 признак: Рассмотрим четырехугольник ABCD. Пусть в нем стороны AB и СD параллельны. И пусть AB=CD. Проведем в нем диагональ BD. Она разделит данный четырехугольник на два равных треугольника: ABD и CBD. Эти треугольники равны между собой по двум сторонам и углу между ними (BD - общая сторона, AB = CD по условию, угол1 = угол2 как накрест лежащие углы при секущей BD параллельных прямых AB и CD.), а следовательно угол3 = угол4.А эти углы будут являться накрест лежащими при пересечении прямых BC и AD секущей BD. Из этого следует что BC и AD параллельны между собой. Имеем, что в четырехугольнике ABCD противоположные стороны попарно параллельны, и, значит, четырехугольник ABCD является параллелограммом.
Визуально представим ромб: это два равнобедренных треугольника, соединённые по основаниям. Теперь представим, какими ещё параметрами должен обладать равнобедренный треугольник ABD с основанием BD, чтобы стать половиной ромба, соединившись по основанию с треугольником BDC, и в то же время высота, опущенная на боковую сторону AD, делила бы её пополам... Если BD - основание, то AD и AB - боковые стороны равнобедренного треугольника, а значит AD=AB. Но высота, проведённая из вершины В, делит ПОПОЛАМ боковую сторону AD равнобедренного треугольника ABD с основанием BD - также, как обязательно делила бы высота, проведённая из вершины А к основанию . Это означает, что сторона AD также может называться основанием треугольника ABD. А когда равнобедренный треугольник имеет больше одного основания, он является РАВНОСТОРОННИМ. А в равностороннем треугольнике все углы равны 60°. Итак, мы имеем ромб, со ставленный из 2-х равносторонних треугольников. Следовательно, два угла ромба равны 60°, а другие два угла равны 60×2=120°
Прямую 5x-2y=-12 надо представить в виде y=f(x). Т.е. y = 2.5x+6. Чтобы найти координаты, в которых функция пересекает ось Y надо подставить x=0. y = f(0) = 2.5*0+6 = 6. ⇛ Эта прямая пересекает ось ординат (Y) в точке (0;6) Тоже самое с осью абсцисс (X), теперь уже Y приравняем к 0: f(x) = 2.5x+6 = 0 ⇒ x = -2.4 ⇛ Эта прямая пересекает ось абсцисс (X) в точке (-2.4;0)
Ну теперь с точкой A(-2;7), подставляем значение X и Y: y = 2.5x+6 ⇒ 7 = 2.5 * (-2) + 6. Считаем: 2.5 * (-2) + 6 = 1, а 1 ≠ 7. Значит точка A(-2;7) не принадлежит прямой 5x-2y=-12.
Вообще-то эта задача в уме решается. Обязательно разберись с этой темой!
Признаки:
1) Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник будет являться параллелограммом.
2)Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник будет параллелограммом.
3) Если в четырехугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырехугольник будет являться параллелограммом.
1 признак:
Рассмотрим четырехугольник ABCD. Пусть в нем стороны AB и СD параллельны. И пусть AB=CD. Проведем в нем диагональ BD. Она разделит данный четырехугольник на два равных треугольника: ABD и CBD. Эти треугольники равны между собой по двум сторонам и углу между ними (BD - общая сторона, AB = CD по условию, угол1 = угол2 как накрест лежащие углы при секущей BD параллельных прямых AB и CD.), а следовательно угол3 = угол4.А эти углы будут являться накрест лежащими при пересечении прямых BC и AD секущей BD. Из этого следует что BC и AD параллельны между собой. Имеем, что в четырехугольнике ABCD противоположные стороны попарно параллельны, и, значит, четырехугольник ABCD является параллелограммом.