Так как трапеция равнобедренная, то углы при её основании равны. Что при большем, что при меньшем основании. Тогда получаем 2 пары углов: одна пара равных острых углов (при большем основании), вторая пара равных тупых углов (при меньшем основании).
Пусть α - больший угол, β - меньший (для определенности)
Сумма углов четырехугольника равна 360°
α+α+β+β=360° ⇒ 2(α+β)=360° ⇒ α+β=180° (это же можно было сразу сказать, если учесть, что основания параллельны, а боковая сторона - секущая, а α и β являются односторонними углами, сумма которых, как известно, равна 180°).
α=180°-72°=108°
То есть 2 угла по 108°, 2 угла по 72°.
ответ: 72°, 72°, 108°, 108°.
1. Расстояние от точки К до прямой МР будет являться перпендикуляр КО, опущенный из вершины К на сторону МР. Тогда в прямоугольном треугольнике РОК сторона КР=2КО (по условию). В прямоугольном треугольнике РОК катет КО равный половине гипотенузы КР лежит против угла КРМ равного 30 градусов.
2. Расстоянием от прямой b до стороны КР будет являться перпендикуляр МН, опущенный из вершины М к стороне КР. Тогда в прямоугольном треугольнике РМН против угла НРМ (это тот же угол КРМ) равного 30 градусов лежит катет МН равный половине гипотенузы МР. МН=16/2=8