Площадь боковой поверхности пирамиды равна S=1/2*P*a. Где Р-периметр основания, а-апофема. бозначим пирамиду. АВСДS, S-вершина, АД-большее основание трапеции, ВС -меньшее. Высота пирамиды SК. Проведём перпендикуляры к сторонам трапеции из точки К. К АВ перпендикуляр КЕ, к ВС КМ, к СД КF, к АД KN. Соединим вершину пирамиды М с точками Е,M,F,N. Полученные прямоугольные треугольники SКЕ, SKM,SKF,SKN равны. Поскольку их острые углы при основании равны по условию , и они имеют общий катет SK. Отсюда высоты боковых граней будут равны, то есть апофема а=5. Соединим вершины трапеции с точкой К. Треугольники КВЕ и КВМ равны по катету(ЕК=КМ) и гипотенузе(ВК). Отсюда ЕВ=ВМ. Аналогично из равенства треугольников АКЕ и АКN получаем АЕ=AN. Отсюда (AN+BM)=АД=2. То же самое в треугольниках МКС, КСF, КДF, KДN. То есть( МС+NД)=СД=4. Тогда периметр основания пирамиды равен Р=2АВ+2СД=4+8=12. Отсюда площадь боковой поверхности пирамиды S=1/2*12*5=30.
Пра́вильный многоуго́льник — это выпуклый многоугольник, у которого все стороны между собой равны и все углы между собой равны.
Определение правильного многоугольника может зависеть от определения многоугольника: если он определён как плоская замкнутая ломаная, то появляется определение правильного звёздчатого многоугольника как невыпуклого многоугольника, у которого все стороны между собой равны и все углы между собой равны.
Содержание [убрать] 1 Свойства 1.1 Координаты 1.2 Размеры 1.3 Площадь 2 Применение 3 История 4 См. также 5 Примечания [править]Свойства [править]КоординатыПусть и — координаты центра, а — радиус описанной вокруг правильного многоугольника окружности, — угловая координата первой вершины, тогда декартовы координаты вершин правильного n — угольника определяются формулами:
где
[править]РазмерыПусть — радиус описанной вокруг правильного многоугольника окружности, тогда радиус вписанной окружности равен
,а длина стороны многоугольника равна
[править]ПлощадьПлощадь правильного многоугольника с числом сторон и длиной стороны составляет:
.Площадь правильного многоугольника с числом сторон , вписанного в окружность радиуса , составляет:
.Площадь правильного многоугольника с числом сторон , описанного вокруг окружности радиуса , составляет:
(площадь основания n-угольной правильной призмы)Площадь правильного многоугольника с числом сторон равна
,где — расстояние от середины стороны до центра, — длина стороны.
Площадь правильного многоугольника через периметр () и радиус вписанной окружности () составляет:
. [править]
2)площадь поверхности после изменений)