Площадь трапеции ABCE равна 18 кв. единиц
Пошаговое объяснение:
Отметим середину стороны АВ через F (см.). Тогда отрезок EF делит параллелограмм ABCD на два равные параллелограммы AFED и FECB. В параллелограмме AFED отрезок AE будет диагональю. В параллелограмме FECB также проведём диагональ EB. По свойству параллелограмма диагонали делят площадь параллелограмма на 2 равные треугольники. В итоге получаем 4 равные треугольники. Если площадь треугольника ADE равна 6 кв. единиц, то площадь трапеции ABCE равна 3·6=18 кв.единиц.
Пусть основание АВ, вершина, из которой проведены медиана и высота - С, середину АВ обозначим М, основание высоты К (СК - высота к АВ). Опишем вокруг АВС окружность и продлим СМ и СК до пересечения с ней. Пусть это точки, соответственно Е для СМ и Р для СК.
Мы знаем, что дуги АЕ и ВР равны.
Поэтому ЕР II AB
=> ЕР перпендикулярно СР,
=> EC - диаметр,
и => М - центр окружности. В самом деле, АМ = МВ, но АВ не перпендикулярно ЕС, а это возможно, только если М - цетр окружности (можно указать на равенство СК и КР, поэтому СМ = МС, и опять - М - центр)
Итак ,мы имеем ПРЯМОУГОЛЬНЫЙ треугольник АВС, угол АСВ = 90 градусов.
Из равенства дуг СВ и ВР (мы уже ДОКАЗАЛИ, что АВ - диаметр, пепендикулярный СР) следует, что угол СЕР в 2 раза больше ВСК,
то есть если считать угол ВСК = 5*х, то
угол ЕСР = 8*х, угол СЕР = 10*х.
Но угол ЕСР + угол СЕР = 90 градусов, откуда х = 5 градусов, угол САВ = угол КСВ = 5*х = 25 градусов, угол КВС = 90 - 25 = 65 градусов.
ответ углы треугольника 25, 65 и 90 градусов.
х²+16х+64+81/4=х²+441/4
16х=441/4-81/4-64
х=26/16
х=1,625
R=√(1,625)²+(10,5)²=10,625