Рассмотрим трапецию ABCD (рис. 2). Треугольники ВОС и AOD подобны, следовательно, SBOC/SAOD = 9/16. Тогда BO/OD = 3/4. Треугольники BOC и COD имеют общую высоту и их основания BO и OD лежат на одной прямой, следовательно, SBOC/SCOD = BO/OD = 3/4, SCOD = 12. Аналогично, SAOB = 12. Тогда SABCD = 9 + 16 + 12 + 12 = 49.
2. Гипотенуза 8+2=10 см Нужно найти катет, допустим катет "а"
а²=с²-в²=100-64=36 а=6
3. Найдём ещё 1 катет, допустим "в" в²=с²-а²=(25-15)(25+15)=10×40=400 в=
Sabc = a×в:2=20×15:2=300:2=150 см²
4. В треугольнике нет диагоналей, там либо биссектрисы, либо высоты, либо медианы.
5. Диагонали (*) пересечения делятся пополам => 12:2=6 - одна половина диагонали, например ОС. Получаем прямоугольный треугольник найдём катет этого треугольника c=10, a=6, в-? в²= 100-36=64 в= Отсюда находим вторую диагональ 8+8=16 см Sabcd=d1 × d2 :2= 16×12:2=192:2=96 см²
6. Т. к. у нас есть высота => у нас получается параллелограм (АВСЕ, СЕ-высота) Значит, ВС=АЕ=15 как противоположные стороны в параллелограме Теперь можем найти ЕD=АD-АЕ=36-15=21 Рассмотрим треугольник СЕD - прямоугольный. По теореме Пифагора с²=а²+в² Нам нужно найти СD - большая боковая сторона, гипотенуза прямоугольного треугольника с²= а²+в²= 21²+20²=441+400=841 с= с=29 см
Единственное, я не писала ответы и не называла стороны, на случай, если у тебя свои названия
Острый угол 60°, => меньшая диагональ ромба =36. из тупого угла в 120° опущена высота на сторону ромба. рассмотрим прямоугольный треугольник, образованный меньшей диагональю ромба 36 -гипотенуза, высотой к стороне -катет и отрезком стороны - катет против угла 30°, он равен 36:2=18. следовательно другой отрезок так же равен 18 см
или другое рассуждение: меньшая диагональ разделила ромб на на 2 равных равносторонних треугольника. высота опущенная из тупого угла -это высота правильного треугольника, которая является биссектрисов и медианой, => 36:2=18 ответ: отрезки по 18