ответ: S=6√432=72√3
Объяснение: проведём к основанию треугольника высоту Н. Она разделила треугольник на 2 прямоугольных треугольника, в котором боковая сторона становится гипотенузой 24см. Мы знаем, что угол при основе 30°. По свойствам угла 30°, катет, который лежит против него равен половине гипотенузы, значит проведённая высота = 24÷2=12. По теореме Пифагора найдём половину основания треугольника: 576 -144=432. Половина основания=√432. Основание = 2×√432. Зная высоту найдём площадь треугольника:
S=√432÷2×12=6√432 = 6×√16×√9×√3=
=6×4×3√3=72√3
Рисунок надеюсь сам(а) нарисуешь. Решение: АС=АВ так как это касательные проведёные к окружности из одной точки. По свойству о касательных уголСАО=углуВАО. угол АВО= углу АСО=90 градусов. Если АС=АВ, то и АС=12. Тогда, по теореме Пифагора находим гипотенузу, тоесть АО. АО(в квадрате)= ОС (в квадрате) +АС (в квадрате) АО=225(под корнем)=15. ответ 15
либо:
Так как отрезки касательных, проведённых из одной точки к одной окружности, равны, то АВ = АС. Следовательно, АС = 12 см.
Рассмотрим треугольник ОВА: отрезок ОВ равен радиусу окружности, ОВ = 9 см. АВ = 12 см (по условию).
Угол АВО равен 90° (касательная к радиусу проходит под прямым углом). Значит, треугольник ОВА - прямоугольный.
По теореме Пифагора: АО² = AB² + BO² = 12² + 9² = 144 + 81 = 225.
Отсюда АО = √225 = 15 (см).
ответ: АС = 12 см, АО = 15 см.
т.к. внешний угол А=120° то угол ВАС=180°-120°=60°
т.к угол АВС=90°, то угол АСВ=180°-60°-90°=30°
По теорема, против угла В 30° лежит катет в 2 раза меньше гипотенузы. АС=5×2=10 см