Приравняем оба у тогда => -x²+10x-16=x+2 => -x²+9x-18=0 отсюда линии ограничения х=3 х=6 => (-x³/3+9x²/2-18x) от 6 до3 => (-6³/3+9*6²/2-18*6)-(-3³/3+9*3²/2-18*3)=7.5
ABCD-четырехугольник , положим что K,M,L,N - это середины сторон AD,AB,BC,CD соответственно, тогда KM средняя линия треугольника ADB, ML средняя линия треугольника AC так же и с остальными. По условию MN=KL , а так как средние лишний равны половине стороне которой параллельны, стало быть четырёхугольник KLMN - прямоугольник. 1) Если требуется найти синус угла между диагоналями четырехугольника, то так как средние линии взаимно перпендикулярны и параллельны диагоналям, то угол между ними равен 90 гр , откуда sin90=1 2) Если требуется найти синус угла между отрезками, то выразив KL=√(BD^2+AC^2)/2 KO=√(BD^2+AC^2)/4 Из теоремы синусов, в треугольнике KON, если x угол между отрезками, то (AC)/sinx =√(BD^2+AC^2)/(2cos(x/2)) откуда sin(x/2)=(AC^2/(2*√(BD^2+AC^2)))=y тогда cos(x/2)=√(1-y^2) значит sin(x)=2*√(y^2-y^4) = AC^2*√(4AC^2+4BD^2-AC^4)/(2*(AC^2+BD^2))
ABCD-четырехугольник , положим что K,M,L,N - это середины сторон AD,AB,BC,CD соответственно, тогда KM средняя линия треугольника ADB, ML средняя линия треугольника AC так же и с остальными. По условию MN=KL , а так как средние лишний равны половине стороне которой параллельны, стало быть четырёхугольник KLMN - прямоугольник. 1) Если требуется найти синус угла между диагоналями четырехугольника, то так как средние линии взаимно перпендикулярны и параллельны диагоналям, то угол между ними равен 90 гр , откуда sin90=1 2) Если требуется найти синус угла между отрезками, то выразив KL=√(BD^2+AC^2)/2 KO=√(BD^2+AC^2)/4 Из теоремы синусов, в треугольнике KON, если x угол между отрезками, то (AC)/sinx =√(BD^2+AC^2)/(2cos(x/2)) откуда sin(x/2)=(AC^2/(2*√(BD^2+AC^2)))=y тогда cos(x/2)=√(1-y^2) значит sin(x)=2*√(y^2-y^4) = AC^2*√(4AC^2+4BD^2-AC^4)/(2*(AC^2+BD^2))
=> (-x³/3+9x²/2-18x) от 6 до3 => (-6³/3+9*6²/2-18*6)-(-3³/3+9*3²/2-18*3)=7.5