Прямые ab и cd не являются параллельными.
Объяснение:
Определение: "Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости и не имеют общих точек или другими словами это две прямые в пространстве, не имеющие общих точек, и не являющиеся параллельными".
Пусть прямая bc лежит в плоскости α. Опустим перпендикуляры из точек a и d на плоскость α. Основания этих перпендикуляров - проекции точек а и d на плоскости α - a' и d' соответственно. Соединив концы скрещивающихся прямых, получим прямые ab и cd, являющиеся гипотенузами прямоугольных треугольников aa'b и dd'c. Совместим катеты aa' и dd'. Тогда гипотенузы ab и cd или пересекутся (при условии равенства катетов aa' и dd'), или будут скрещивающимися. Следовательно, прямые ab и cd не могут быть параллельными.
Уравнение параболы в общем виде:
y=a(x+b)²+c
b и c показывают сдвиг параболы ax² по оси х и у соответственно.
Раз парабола касается оси х в точке (3,0), значит, в этой точке лежит ее вершина, т.е. парабола по оси у не сдвинута - следовательно, c=0.
А по оси х парабола сдвинута на 3. Следовательно, b=-3
y=a(x-3)²
Координаты данных точек должны удовлетворять уравнению параболы. Подставляя, находим а:
5=a(0-3)²
5=9a
a=5/9
Уравнение параболы имеет вид: