28 см
Объяснение:
R - середина MN по условию, значит если NR=2, то MN=2*2=4см.
Рассмотрим △MNQ. В нём RS - средняя линия, т.к. R - середина MN по условию, S - точка пересечения диагоналей, а точка пересечения диагоналей параллелограмма делит их пополам. Значит по свойству средней линии треугольника, RS ll MQ. Значит, продолжая отрезок RS до точки L пересечения с PQ мы получим параллелограмм MRLQ (по свойству, что в параллелограмме противоположные стороны попарно параллельны) => MQ=RL.
△MNQ=△PQN по свойству диагонали, значит и средние линии их равны, т.е. RS=SL. => MQ=2*RS=2*5=10 см
P=2*MN+2*MQ=2*4+2*10=28 см
обозначим меньший треугольник АВС, больший треугольник А1В1С1,
по условию эти треугольники подобны...
Р(АВС) : Р(А1В1С1) = 4:5 (это и есть коэффициент подобия)
известно:
периметры подобных фигур относятся как коэффициент подобия,
площади относятся как квадрат коэффициента подобия
(объемы относятся как куб коэфф.подобия)
S(АВС) : S(А1В1С1) = 16:25
или 25*S(АВС) = 16*S(А1В1С1)
S(А1В1С1) = (25/16)* S(АВС) АВС--меньший треугольник
S(А1В1С1) - S(АВС) = 45 (см²) (по условию)
(25/16)*S(АВС) - S(АВС) = 47 (см²)
S(АВС)*((25/16) - 1) = 45 (см²)
S(АВС)*(9/16) = 45
S(АВС) = 27*16/9 = 3*16 = 48 (см²)
Не уверена, что все правильно, но я пыталась
A2,B2 и C2- основания высот;
A3,B3 и C3- середины отрезков, соединяющих точку пересечения высот с вершинами.
Так как A2C1 = C1A = A1B1 и A1A2||B1C1, точка A2 лежит на описанной окружности треугольника A1B1C1.
Аналогично точки B2 и C2 лежат на описанной окружности треугольника A1B1C1.
Рассмотрим теперь окружность S с диаметром A1A3. Так как A1B3||CC2 и A3B3||AB, то <A1B3A3 = 90°, а значит, точка B3 лежит на окружности S.
Аналогично доказывается, что точки C1,B1 и C3 лежат на окружности S. Окружность S проходит через вершины треугольника A1B1C1, поэтому она является его описанной окружностью.
При гомотетии с центром H и коэффициентом 1/2 описанная окружность треугольника ABC переходит в описанную окружность треугольника A3B3C3, т. е. в окружность девяти точек. Значит, при этой гомотетии точка O переходит в центр окружности девяти точек.