Трапеция АВСД, ВС=16, АД=28, ВД=17, АС=39 опустим высоты ВН и СМ на нижнее основание АД, тогда АД=АН+НМ+МД=АН+ВС+МД=АН+16+МД 28=АН+16+МД АН+МД=12 Из прямоугольного ΔВДН найдем катет ВН: ВН²=ВД²-НД²=17²-(16+12-АН)²=-495+56АН-АН² Из прямоугольного ΔАСМ найдем катет СМ: СМ²=АС²-АМ²=39²-(АН+16)²=1265-32АН-АН² ВН=СМ, т.к. основания параллельны -495+56АН-АН²=1265-32АН-АН² 88АН=1760 АН=20 ВН²=289-64=225, ВН=15 Площадь S=1/2*(ВС+АД)*ВН=1/2*(16+28)*15=330
Док-ть: АD + СВ = АВ Решение. Продолжим стороны ВС И АD от точек С и D до пересечения в точке О. Полученный Δ АОВ – равносторонний, т.к. ∠DАВ = ∠АВС = 60° по условию, значит, и ∠АОВ = 180° – 60° – 60° = 60°. Из равенства углов следует равенство сторон: АВ = ОВ = АО Рассмотрим ΔАВС и ΔВОD; ∠АВС = ∠ВОD = 60°; ∠САВ = ∠СВD по условию, стороны между углами также равны: АВ = ОВ. ⇒ ΔАВС = ΔВОD Из равенства треугольников следует: CВ = ОD Но АО = ОD + АD, заменив АО на АВ, а ОD на СB получим: АВ = CВ + АD, что и требовалось доказать!
На основании свойства касательных из одной точки к окружности обозначим катеты 3+r и 4+r. По Пифагору (3+r)² + (4+r)² = 7². 9+6r+r²+16+8r+r² = 49. 2r² + 14r - 24 = 0 сократим на 2: r² + 7r - 12 = 0. Квадратное уравнение, решаем относительно r: Ищем дискриминант: D=7^2-4*1*(-12)=49-4*(-12)=49-(-4*12)=49-(-48)=49+48=97; Дискриминант больше 0, уравнение имеет 2 корня: r_1=(√97-7)/(2*1)=√97/2-7/2=√97/2-3,5 ≈ 1,42443; r_2=(-√97-7)/(2*1)=-√97/2-7/2=-√97/2-3,5 ≈ -8,42443 отрицательное значение не принимаем. Катеты равны 3+1,42443 = 4,42443 и 4+1,42443 = 5,42443. Теперь находим искомую площадь треугольника: S = (1/2)*4,42443*5,42443 = 12 см².
опустим высоты ВН и СМ на нижнее основание АД, тогда
АД=АН+НМ+МД=АН+ВС+МД=АН+16+МД
28=АН+16+МД
АН+МД=12
Из прямоугольного ΔВДН найдем катет ВН:
ВН²=ВД²-НД²=17²-(16+12-АН)²=-495+56АН-АН²
Из прямоугольного ΔАСМ найдем катет СМ:
СМ²=АС²-АМ²=39²-(АН+16)²=1265-32АН-АН²
ВН=СМ, т.к. основания параллельны
-495+56АН-АН²=1265-32АН-АН²
88АН=1760
АН=20
ВН²=289-64=225, ВН=15
Площадь S=1/2*(ВС+АД)*ВН=1/2*(16+28)*15=330