Окружность задан уравнении х"2"+(у-1)"2"-4 а)укажите координаты центра r радиус окружности б)принадлежат ли данной окружности точки а(2,1) в (0,3) с(5,8) в)напишите уравнение прямой ав
В равнобедренном треугольнике угол с градусной мерой в 120 градусов будет являться лежащим напротив основания данного треугольника, а оставшиеся два, равных друг другу угла (т.к. они лежат у основания этого треугольника), будут равны (180-120):2=30 градусов. Значит, высота, опущенная к основанию равнобедренного треугольника, будет являться катетом в равнобедренном треугольнике. Эта высота лежит напротив угла в 30 градусов, т.е. она равна половине гипотенузы прямоугольного треугольника. Сама высота проведена к середине основания, т.к. проведена из тупого угла в равнобедренном треугольнике. Значит, отрезок, соединяющий середины боковой стороны(гипотенузы) и основания, будет проведён из прямого угла в прямоугольном треугольнике к середине его гипотенузы. Значит, этот отрезок является медианой в прямоугольном треугольнике, проведённой из прямого угла. А как мы все знаем, медиана, проведённая из вершины прямого угла к гипотенузе, равна половине этой же гипотенузы. То есть искомый нами отрезок равен высоте, значение которой нам известно. Таким образом, отрезок равен 3-ём см. ответ: 3 см.
Точка С находится на оси ординат, значит имеет координаты С(0;y;0). Вектор АС(-2;y-5;-8). Модуль вектора (его длина) |AC|=√(4+(y-5)²+64). Вектор ВС(-6;(y-1);0). Модуль вектора (его длина) |BC|=√(36+(y-1)²+0). Модули (длины) этих векторов равны по условию. Значит √(4+(y-5)²+64)=√(36+(y-1)²+0). Возведем обе части в квадрат: 4+(y-5)²+64=36+(y-1)² или 4+y²-10y+25+64=36+y²-2y+1 8y=56. y=7. ответ: С(0;7;0)
Проверим: |AC|=√(4+4+64)=√72, |BC|=√(36+36+0)=√72. То есть точка С находится на равном расстоянии (равноудалена) от точек А и В.
x^2 + (y - 1)^2 = 4
Координаты центра: (0; 1), радиус 2.
Точки подставляем и смотрим:
A: 2^2 + (1 - 1)^2 = 4 - неверно, точка не принадлежит окружности
B: 0^2 + (3 - 1)^2 = 4 - верно, принадлежит
C: 5^2 + (8 - 1)^2 = 4 - неверно, не принадлежит.