Основание пирамиды - описанный вокруг основания конуса равносторонний треугольник. Центр вписанной в треугольник окружности лежит в точке пересечения биссектрис. Для правильного треугольника эта точка является и точкой пересечения медиан и высот.
Радиус окружности, вписанной в правильный треугольник, равен 1/3 его высоты.
Обозначим основание пирамиды АВС, вершину М ( совпадает с вершиной конуса).
Высота основания ВН=3r=30
АВ=ВН:sin60°=30:√3/2=60•2/√3=20√3
Формула площади боковой поверхности правильной пирамиды
S=p•h:2, т.е. произведение полупериметра на пофему.
По т.Пифагора апофема
МН=√(МО²+ОН²)=√(576+100)=26
р=0,5•3•20√3 =30√3
S=26•30√3=780√3
Проведем высоту СМ. И рассмотрим получившийся четырехугольник ВАМС, это прямоугольник, так как ∠А=∠В=90, и ∠М=∠С=90(по опр. высоты) ⇒ВА=СМ=6, и ВС=АМ=6.
Рассмотрим ΔСМD: СМ мы провели так, что она разделила ∠ВСD=135, на ∠МСВ=90 и ∠МСD=45. Если ∠МСD=45, а ∠СМD=90(по опр. высоты), то ∠СDM=45(по теореме о сумме ∠ в Δ) ⇒ ΔСМD - равнобедренный (по признаку) ⇒ СМ=MD=6(по опр. равноб. Δ)
Найдем основание трапеции: АМ+МD
6+6=12
Найдем площадь:
S=
ответ:54