1. Находим площадь треугольника.
S=½ab
S=½·3·4=6
2. Находим гипотенузу по теореме Пифагора.
с²=9+16=25
с=5
3. Находим радиус описанного круга.
R=abc/(4S)
R=3·4·5/(4·6) = 2,5
4. Находим площадь круга.
S=πR²
S = 2,5²π = 6,25π.
ответ. 6,25π.
ответ: стороны треугольника 13; 14; 15
Объяснение: проведенные отрезки - это биссектрисы данного треугольника (центр вписанной окружности - точка пересечения биссектрис треугольника);
получившиеся треугольники имеют равные высоты - это радиус вписанной окружности (любая точка биссектрисы угла равноудалена от сторон угла; радиус, проведенный в точку касания перпендикулярен касательной)
площади треугольников, имеющих равные высоты относятся как основания; получим отношения сторон треугольника (для определенности обозначим сторону (а) у треугольника с площадью 30; сторона (b) у треугольника площадью 28; (с) для площади 26):
а/b = 30/28 = 15/14
a/c = 30/26 = 15/13
b/c = 28/26 = 14/13
можно записать три стороны:
a = 15c/13; b = 14c/13 и с.
площадь всего треугольника = 30+28+26 = 84 и она связана со сторонами по формуле Герона)
полупериметр = ((15/13)+(14/13)+1)*(c/2) = 21c/13
84 = корень из((21с/13)*(6c/13)*(7c/13)*(8c/13))
84 = 7*3*4*c^2/169
c^2 = 169
c = 13
b = 14
a = 15
S = ПR^2
R - радиус описанной окружности. Для прямоугольного тр-ка он равен половине гипотенузы, так как прямой угол вписанный в окружность всегда опирается на диаметр.
Находим гипотенузу по теореме Пифагора:
с = кор(9+16) = 5
R = 2,5
S = 6,25П