ДАНО: окружность, AB-диаметр, DM-касательная, DA перпенд. DM
Док-ть: АС- биссектриса угла BAD
ДОКАЗАТЕЛЬСТВО: проведем диаметр AB, такой, что он параллелен DM; проведем перпендикуляр из центра окружности к касательной; также проведем луч AC.
Рассмотрим прямоугольник ADCO: AO=OC(как радиусы), СO= DA(т.к. прямые DM и AB параллельны, а OC и DA - перпендикуляры) Рассмотрим треугольник АСО: угол О=90 градусов, АО=ОС => треугольник равнобедренный => угол САО=АСО= (180-90)\2= 45 градусов Угол АСО = DAC(как накрест лежащие при параллельных прямых АВ и DM) И так как угол DAO равен углу САО(DAO=CAO=45),то АС является биссектрисой угла OAD(или BAD- это просто один и тот же угол)
1. По первому признаку подобия треугольников будут подобны любые два .(?) треугольника.
I. Признак подобия треугольников по двум углам. Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны. Так как острые углы равнобедренных прямоугольныхтреугольников равны 45º, то по этому признаку подобны: 5. любые два равнобедренных прямоугольных треугольника .---------------- 2.Треугольники АВС и AMN - равнобедренные. Периметр треугольника AMN равен 320 см, АВ=16 см, АМ=80 см. Найдите площадь треугольника АВС. Задача не совсем корректна. Приходится по теме вопроса догадываться, что данные треугольники подобны. В треугольнике АМN сторона АМ=80. Из неравенства треугольников следует, что только АМ может быть основанием этого треугольника, и АN=МN=(320-80):2=120 Тогда Вариант 1) АВ=16- основание меньшего треугольника k=АМ:АВ=80:16=5 ВС=АС=120:5=24 Высоту СН ∆ АВС найдем по т.Пифагора: СН=√(ВС²-ВН²)=√512=16√2 Ѕ∆ АВС=ВН*СН=8*16√2=128√2 см² или ≈181,02 см² Вариант 2) АВ=16 - боковая сторона меньшего треугольника. Тогда k=AM:BC=120:16=7,5 АС=80:7,5=32/3 Тогда СН=АС:2=16/3 Высота ВН=√(BC² -CH²)=√(9*256-256):9)=√(8*256:9)=√(2*4*256:3)=(32√2)/3 S ∆АВС=ВН*СН=(32√2)/3)*16/3 S ∆АВС=(32*16√2)/9 см² или ≈ 80,453 см²
тк сумма углов равна 180