М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

Через середину радиуса шара проведена плоскость,перпендикулярная радиусу. какую часть радиуса шара составляет радиус круга,получившегося в сечении

👇
Ответ:
sinan1922abdullaev
sinan1922abdullaev
11.12.2020
Центр шара - О. Середина радиуса М, тогда радиус сечения МК. КО это тоже радиус шара. Треугольник ОКМ прямой. Тогда МК^2=ОК^2-ОМ^2 ОМ=ОК=R- радиус шара, тогда МК=(корень из 3/2)*R
4,7(10 оценок)
Открыть все ответы
Ответ:
EZno
EZno
11.12.2020

Сделаем рисунок и обозначим вершины пирамиды АВСА1В1С1. Ребро ВВ1⊥АВС=1 см

Площадь боковой поверхности этой пирамиды -  сумма площадей трех трапеций: двух прямоугольных и одной равнобедренной - той, что противолежит  ребру ВВ1. 

В основаниях пирамиды правильные треугольники - следовательно,   длины  средней линии всех трапеций равны 0,5•(3+5)=4 см

Площадь прямоугольных граней  равна произведению  их средней линии на  длину высоты пирамиды, т.е.  . 

S (АВВ1А1)=S (ВВ1С1С)= 4•1=4 см²

Чтобы найти  высоту грани АА1С1С,  проведем в основаниях пирамиды высоты  ВН и В1К  и соединим К и Н. 

Плоскость прямоугольной трапеции ВНКВ1 перпендикулярна плоскости оснований, т.к. содержит в себе отрезок ВВ1, перпендикулярный обоим основаниям.  

Из К опустим высоту КТ. 

КН по теореме о трех перпендикулярах перпендикулярна АС и является высотой трапеции АСС1А1. 

В прямоугольном треугольнике КТН катет КТ=ВВ1=1см, катет НТ равен разности высот оснований пирамиды. 

ВК=(3√3):2

BH=(5√3):2

ТН=2√3):2=√3 см

КН=√(КТ²+НТ²)=√4=2 см

S (АСС1А1)=4*2=8 см²

S(бок)=4+4+8=16 см²


Основаниями усечённой пирамиды являются правильные треугольники со сторонами 5 см и 3 см соответстве
4,6(19 оценок)
Ответ:
Otahalepi
Otahalepi
11.12.2020
Пусть ad = a1d1 — равные биссектрисы, ∠a = ∠a1, ac = a1c1 — равные стороны. в δаdс = δa1d1c1: ∠dac = ∠d1a1c1 (т.к. ∠dac половина угла ∠bac ∠dac = ∠bac : 2 = ∠b1a1c1 : 2 = ∠d1a1c1). ad = a1d1, ас = а1с1. (по условию: ad = a1d1 — равные биссектрисы, aс = a1c1 — равные прилежащие стороны). таким образом, δadc = δа1d1c1 по 1-му признаку равенства треугольников, откуда ∠с = ∠с1 как лежащие против равных сторон в равных треугольниках) в δabcи δа1в1с1: ас = а1с1, ∠а = ∠а1 (по условию) ∠с = ∠с1. таким образом, δabc = δа1в1с1 по 1-му признаку равенства треугольников, что и требовалось доказать.
4,8(26 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ