Точки О, А1 и С1 принадлежат диагональному сечению данного по условию куба. Следовательно, в пирамиде ОА1В1С1D1 сечением, площадь которого нужно вычислить, является треугольник А1ОС1.
Делаешь такой чертеж.проводишь линию кот . изображает человека. на некотором расстоянии от него проводишь другую линию повыше- это будет столб с фонарем.соединяешь и продолжаешь дальше где должна быть тень | примерно так. одна вертикальная || черточка - человек две вертикальные черточки - столб.теперь точки соединяешь у тебя получится треугольник.который состоит из двух подобных треугольников. высоту фонаря обозначим х. составляешь пропорцию 9 : 1.8 = ( 9+ 16 ) \ х х = 1.8 * 25 \ 9 = 5 метров высота фонаря
Чтобы ответить на вопрос задачи, нужно найти длину основания сечения и его высоту. По условию сечение -квадрат, значит, достаточно найти длину одной стороны - хорды ВС, лежащей в плоскости основания цилиндра. Она удалена от оси на 8 см. Т.к. расстояние от точки (О) до прямой ( хорда ВС) измеряется перпендикуляром, проведем ОН. Перпендикуляр к хорде из центра окружности делит ее пополам. ВН=НС Треугольник ВОН - прямоугольный с гипотенузой=r=10, и катетом ОН=8. Этот треугольник "египетский, второй катет ВС равен 6 ( можно проверить по т.Пифагора) Тогда ВС=2*6=12 см АВ=ВС=12 см ⇒ Ѕ АВСД=12²=144 см²
Точки О, А1 и С1 принадлежат диагональному сечению данного по условию куба. Следовательно, в пирамиде ОА1В1С1D1 сечением, площадь которого нужно вычислить, является треугольник А1ОС1.
Ѕ(А1ОС1)=ОН•А1С1:2
ОН=АА1=8
Формула диагонали квадрата d=а√2 ⇒
А1С1=8√2
S (A1OC1)==(8•8√2):2=32√2 дм²