Компания выиграла тендер на озеленение соснами сквера имеющего форму прямоугольной трапеции с основанием 430 м и 770 м и меньшей боковой стороной 300 м сколько всего сотен потребуется если озеленение 5 м в квадрате необходимо два дерева
Длины сторон треугольника должны удовлетворять неравенству треугольника: сумма любых двух сторон больше третьей стороны.
а) 2 + 8 = 10 (см), 10 см < 13 см - построить треугольник нельзя
б) 0,5 м + 0,5 м = 1 м - построить треугольник нельзя.
№2
а)1:2:3 нет, потому что неравенства
триугольника
пусть 1 часть х
х<2х+3х правильно
2х<х+3х правильно
3х<х+2х неправильно
б)2:3:6 нет
2х<3х+6х правильно
3х<2х+6х правильно
6х<3х+2х не правильно
в)1:1:2 нет
х<х+2х правильно
х<х+2х правильно
2х<х+х не правильно
Достаточное условие: сумма двух меньших сторон больше большей стороны треугольника
№3
а) Раасмотрим 2 случая.
1) 6см, 3см, 3 см
6<3+3
6<6 - неверно, значит такой треугольник не существует
2) 6см, 6см, 3 см
6<6+3
6<9 - верно, значит 3 сторона = 6см
б) 8см, 2см, 2см
8<2+2
8<4 - неверно
8см, 8см, 2см
8<8+2
8<10 - верно
3 сторона = 8см
№4
Тут есть 2 варианта любое переписывай
Вар 1
Дан р/б треугольник. Пусть равные стороны по 12 см, а основание 5 см.
12*2 + 5 = 24+5 = 29 см - периметр данного треугольник
Вар 2
Дан р/б треугольник. Пусть равные стороны по 5 см, основание 12 см
Тогда получается, что сумма двух сторон треугольника меньше третьей стороны, т. е. 12 >5+5, чего не может быть согласно неравенству треугольника (каждая сторона треугольника должна быть меньше суммы двух других сторон)
Круг с центром О, диаметр АВ=2ОА=2R Третья касательная касается круга в точке Н. Т.к. отрезки касательных к окружности, проведенных из одной точки, равны, то СА=СН и ДВ=ДН Получается, что круг вписан в ∠АСД и в ∠СДВ, а если окружность вписана в угол, то ее центр лежит на биссектрисе этого угла, т.е. СO - биссектриса ∠АСД.и ДО - биссектриса ∠СДВ. Также СO - биссектриса ∠АОН и ДО - биссектриса ∠ВОН. ∠АОН и ∠ВОН - смежные, значит СО⊥ДО В прямоугольном ΔСОД ОН- высота, проведенная из прямого угла к гипотенузе СД (касательная к окружности перпендикулярна к радиусу, проведенному в точку касания), значит ОН²=СН*ДН=СА*ДВ, ч.т.д
№1
Длины сторон треугольника должны удовлетворять неравенству треугольника: сумма любых двух сторон больше третьей стороны.
а) 2 + 8 = 10 (см), 10 см < 13 см - построить треугольник нельзя
б) 0,5 м + 0,5 м = 1 м - построить треугольник нельзя.
№2
а)1:2:3 нет, потому что неравенства
триугольника
пусть 1 часть х
х<2х+3х правильно
2х<х+3х правильно
3х<х+2х неправильно
б)2:3:6 нет
2х<3х+6х правильно
3х<2х+6х правильно
6х<3х+2х не правильно
в)1:1:2 нет
х<х+2х правильно
х<х+2х правильно
2х<х+х не правильно
Достаточное условие: сумма двух меньших сторон больше большей стороны треугольника
№3
а) Раасмотрим 2 случая.
1) 6см, 3см, 3 см
6<3+3
6<6 - неверно, значит такой треугольник не существует
2) 6см, 6см, 3 см
6<6+3
6<9 - верно, значит 3 сторона = 6см
б) 8см, 2см, 2см
8<2+2
8<4 - неверно
8см, 8см, 2см
8<8+2
8<10 - верно
3 сторона = 8см
№4
Тут есть 2 варианта любое переписывай
Вар 1
Дан р/б треугольник. Пусть равные стороны по 12 см, а основание 5 см.
12*2 + 5 = 24+5 = 29 см - периметр данного треугольник
Вар 2
Дан р/б треугольник. Пусть равные стороны по 5 см, основание 12 см
Тогда получается, что сумма двух сторон треугольника меньше третьей стороны, т. е. 12 >5+5, чего не может быть согласно неравенству треугольника (каждая сторона треугольника должна быть меньше суммы двух других сторон)
Этот вариант невозможен.
ответ: периметр 29 см
Хх все