Но если, как это делается в школе, рассматривать только действительные корни, и при этом два равных корня считать одним, то при таких условиях уравнение будет иметь 2 корня только в случае, если дискриминант положителен.
Пусть велосипедист потратил на дорогу Х часов. Тогда мотоциклист потратил Х-12. На момент встречи, каждый из них уже был в дороге 2,5 часа. За эти два с половиной часа мотоциклист проехал то расстояние, которое велосипедист должен был бы проехать за Х-2,5 часов. S=v*t, скорость велосипедиста v, мотоциклиста v₁. То есть, скорость мотоциклиста в раза выше. Приравняем теперь полное расстояние между пунктами А и В. Время в пути для велосипедиста Х, для мотоциклиста Х-12, скорость велосипедиста v, скорость мотоциклиста - , S=t*v. Второй корень противоречит смыслу задачи - время в пути для мотоциклиста (2-12=-10) получается отрицательным. Следовательно, велосипедисту на дорогу из В в А нужно 15 часов. Проверка: Скорость мотоциклиста в раз выше скорости велосипедиста. Следовательно, на дорогу ему нужно впятеро меньше времени. 15/5=3, 15-12=3. ответ верен. ответ: 15 часов.
Вообще говоря, квадратное уравнение ВСЕГДА имеет 2 корня. Они могут быть:
1) разными действительными числами (если дискриминант уравнения положителен);
2) одинаковыми действительными числами (если дискриминант равен нулю);
3) комплексными сопряжёнными числами (если дискриминант отрицателен).
Но если, как это делается в школе, рассматривать только действительные корни, и при этом два равных корня считать одним, то при таких условиях уравнение будет иметь 2 корня только в случае, если дискриминант положителен.